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� 1. Ââåäåíèå è ïîñòàíîâêà çàäà÷è

Òåîðåìà Êàðàòåîðîäè [1℄ óòâåðæäàåò, ÷òî êîí�îðìíîå îòîáðàæåíèå îá-

ëàñòåé íà ïëîñêîñòè, îãðàíè÷åííûõ æîðäàíîâûìè êðèâûìè, ìîæåò áûòü

ãîìåîìîð�íî ïðîäîëæåíî íà ãðàíèöó. Èññëåäóÿ ñëó÷àé íåæîðäàíîâûõ îá-

ëàñòåé, Ê. Êàðàòåîäîðè çàëîæèë îñíîâû òåîðèè ïðîñòûõ êîíöîâ â R2
, â

ðàìêàõ êîòîðîé áûë îòêðûò ãåîìåòðè÷åñêèé ïîäõîä äëÿ îïèñàíèÿ ïîâåäå-

íèÿ êîí�îðìíûõ îòîáðàæåíèé â ãðàíè÷íûõ òî÷êàõ. Òåîðèÿ ïðîñòûõ êîí-

öîâ Êàðàòåîäîðè ïîëó÷èëà ðàçâèòèå â ðàáîòàõ �.Ä. Ñóâîðîâà [2℄,

Ä.Á.À. Ýïñòåéíà [3℄, â êîòîðûõ áûëè èññëåäîâàíû íîâûå çàäà÷è ãðàíè÷-

íîãî ïîâåäåíèÿ îòîáðàæåíèé íà ïëîñêîñòè R2
. Â.À. Çîðè÷ â ðàáîòàõ [4, 5℄

ðàññìàòðèâàåò ñëó÷àé ìíîãîìåðíîãî åâêëèäîâà ïðîñòðàíñòâà Rn
, n > 2.

Ïîäõîä â òåðìèíàõ ïðîñòûõ êîíöîâ îêàçàëñÿ ïîëåçíûì, â ÷àñòíîñòè, ïðè

èññëåäîâàíèè çàäà÷ Äèðèõëå äëÿ ýëëèïòè÷åñêèõ óðàâíåíèé [6℄ è â òåî-

ðèè äèíàìè÷åñêèõ ñèñòåì [7, 8℄. Â íàñòîÿùåå âðåìÿ òåîðèÿ ïðîñòûõ êîí-

öîâ õîðîøî ðàçâèòà â ðàçëè÷íûõ íàïðàâëåíèÿõ, áîëåå ïîäðîáíûé îáçîð

èìåþùèõñÿ ðåçóëüòàòîâ è ëèòåðàòóðû ñì. â [9, 10, 11, 12℄. Â îòëè÷èå îò

ïëîñêîñòè, â ìíîãîìåðíîì ñëó÷àå ñóùåñòâóþò æîðäàíîâà îáëàñòü è êâàçè-

êîí�îðìíîå îòîáðàæåíèå, êîòîðîå íåâîçìîæíî ãîìåîìîð�íî ïðîäîëæèòü

íà ãðàíèöó ýòîé îáëàñòè [13℄. Çíà÷èò, èññëåäîâàíèå çàäà÷è î ãðàíè÷íîì ñî-

îòâåòñòâèè â ïðîñòðàíñòâå òðåáóåò áîëåå òîíêîãî àíàëèçà ãåîìåòðè÷åñêèõ

ñâîéñòâ îáëàñòåé. �åîìåòðè÷åñêèé ïîäõîä ê äàííîìó âîïðîñó, îñíîâàííûé

íà ïîíÿòèè ìîäóëÿ ñåìåéñòâà êðèâûõ, çàêëþ÷àåòñÿ â èññëåäîâàíèè îá-

ëàñòåé, îáëàäàþùèõ ñïåöèàëüíûìè ãåîìåòðè÷åñêèìè õàðàêòåðèñòèêàìè,

íàïðèìåð, ñâîéñòâàìè ãðàíèöû áûòü êâàçèêîí�îðìíî ïëîñêîé è êâàçè-

êîí�îðìíî äîñòèæèìîé [14, 15℄ èëè ñâîéñòâàìè P1 è P2 èç [12, 16℄. Òàêîé
ïîäõîä íàøåë ïðèìåíåíèå â èññëåäîâàíèè ãðàíè÷íîãî ñîîòâåòñòâèÿ òàê

íàçûâàåìûõ Q-ãîìåîìîð�èçìîâ, ñì. ìîíîãðà�èþ [17℄ è ðàáîòû [12, 18℄.

Åùå îäíî íàïðàâëåíèå â èññëåäîâàíèè ãðàíè÷íîãî ïîâåäåíèÿ � ïîïûò-

êà îáîáùèòü êîíñòðóêöèþ ïðîñòûõ êîíöîâ Êàðàòåîäîðè íà ìåòðè÷åñêèå

ïðîñòðàíñòâà ñ ìåðîé. Îäíî èç òàêèõ îáîáùåíèé áûëî ïðåäïðèíÿòî â ðà-

áîòå [10℄. Äàííûå ïðîñòûå êîíöû îòëè÷àþòñÿ îò ïðîñòûõ êîíöîâ Êàðàòåî-

äîðè è èñïîëüçóþò, ñêîðåå òîïîëîãèþ îáëàñòåé, à íå ãåîìåòðèþ îáëàñòè

è (èëè) îòîáðàæåíèé. Ê ýòîìó íàïðàâëåíèþ îòíîñÿòñÿ òàêæå ðàáîòû [11℄,

[19℄, [20℄ (ñì. òàêæå ïðèâåäåííóþ â íèõ ëèòåðàòóðó), ãäå óñòàíàâëèâàþò-

ñÿ ðåçóëüòàòû î ãðàíè÷íîì ïîâåäåíèè ðàçëè÷íûõ êëàññîâ îòîáðàæåíèé

îòíîñèòåëüíî ïðîñòûõ êîíöîâ.

Â ðàáîòàõ [21, 22, 23℄ áûë çàëîæåí �óíêöèîíàëüíî-ãåîìåòðè÷åñêèé ïîä-

õîä, ê èññëåäîâàíèþ ãðàíè÷íîãî ïîâåäåíèÿ êâàçèêîí�îðìíûõ îòîáðàæå-

ISSN 1560-750X

Ìàòåìàòè÷åñêèå òðóäû, 2025, Òîì 28, � 4, C. 11-45

Mat. Trudy, 2025, V. 28, N. 4, P. 11-45



14 �ðàíè÷íîå ïîâåäåíèå Qq,p-ãîìåîìîð�èçìîâ

íèé, â êîòîðîì êëþ÷åâóþ ðîëü èãðàåò ïîíÿòèå åìêîñòè êîíäåíñàòîðà: åì-

êîñòü êîíäåíñàòîðà ñâÿçûâàåò åâêëèäîâó ãåîìåòðèþ îáëàñòè è ãåîìåòðèþ

�óíêöèîíàëüíîãî ïðîñòðàíñòâà L1
n íà ýòîé îáëàñòè.

Â ðàáîòå [24℄ äàííûé ïîäõîä óñïåøíî ïðèìåíÿëñÿ â ðåøåíèè ðÿäà çà-

äà÷ î ãðàíè÷íîì ñîîòâåòñòâèè ïðè îòîáðàæåíèÿõ, îòëè÷íûõ îò êâàçèêîí-

�îðìíûõ. Â ñòàòüå [15℄ ïîäõîä ðàáîò [21, 22, 23℄ ê îïðåäåëåíèþ åìêîñò-

íîé ìåòðèêè áûë èíòåðïðåòèðîâàí íà ÿçûêå ìîäóëåé ñåìåéñòâ êðèâûõ.

Çàìåòèì, ÷òî ìåæäó òðåìÿ îñíîâíûìè ïîäõîäàìè ê ãðàíè÷íîìó ïîâåäå-

íèþ îòîáðàæåíèé � ñ ïîìîùüþ ïðîñòûõ êîíöîâ, ãåîìåòðè÷åñêèì îïèñàíè-

åì è �óíêöèîíàëüíî-ãåîìåòðè÷åñêèì îïðåäåëåíèåì � åñòü îïðåäåëåííàÿ

èåðàðõèÿ: êàæäûé èç íèõ àäåêâàòíî îïèñûâàåò ãðàíè÷íîå ïîâåäåíèå îïðå-

äåëåííûõ êëàññîâ îòîáðàæåíèé.

Â ðàáîòå [25℄ èññëåäóåòñÿ çàäà÷à î ãðàíè÷íîì ñîîòâåòñòâèè äëÿ îáðàò-

íûõ ê Qq,p-ãîìåîìîð�èçìàì â Rn
; îñíîâû òåîðèè Qq,p-ãîìåîìîð�èçìîâ

çàëîæåíû â ðàáîòàõ [26, 27, 28, 29℄. Äëÿ ýòîãî èññëåäîâàíû ïîïîëíåíèÿ

îáëàñòåé ïî ñïåöèàëüíûì åìêîñòíûì ìåòðèêàì â îáðàçå è ïðîîáðàçå, àñ-

ñîöèèðîâàííûì ñ ãåîìåòðèåé ïîäõîäÿùåãî êëàññà Ñîáîëåâà L1
p. Ýëåìåíòû,

ïðèñîåäèíÿåìûå ê îáëàñòè ïðè ïîïîëíåíèè ñîîòâåòñòâóþùåãî ìåòðè÷åñêî-

ãî ïðîñòðàíñòâà, îáðàçóþò íåñîáñòâåííóþ ãðàíèöó, êîòîðóþ ìû íàçûâàåì

åìêîñòíîé ãðàíèöåé Hρ,p. Èçó÷åíèå ãðàíè÷íîãî ïîâåäåíèÿ ãîìåîìîð�èçìà

f îáðàòíîãî ê Qq,p-ãîìåîìîð�èçìó, ñîñòîèò â òîì, ÷òîáû

(a) ïðîäîëæèòü f íà åìêîñòíóþ ãðàíèöó Hρ,p;

(b) óñòàíîâèòü ñâÿçü ìåæäó ýëåìåíòàìè åìêîñòíîé ãðàíèöû ñ òî÷êàìè

åâêëèäîâîé ãðàíèöû îáëàñòè;

Îñíîâíàÿ öåëü íàñòîÿùåé ðàáîòû � ðàñïðîñòðàíèòü êëþ÷åâûå ïîíÿòèÿ

è ðåçóëüòàòû ãðàíè÷íîãî ïîâåäåíèÿ íà Qq,p-ãîìåîìîð�èçìû ìåæäó äâóìÿ

îáëàñòÿìè â ìåòðè÷åñêèõ ïðîñòðàíñòâàõ. Îñíîâû òåîðèè Qq,p-ãîìåîìîð-

�èçìîâ â ìåòðè÷åñêèõ ïðîñòðàíñòâàõ ñ ìåðîé çàëîæåíû â ðàáîòàõ [30, 31℄.

Îïèøåì ñòðóêòóðó ðàáîòû.

�àçä. 2 ñîäåðæèò ïðåäâàðèòåëüíûå ñâåäåíèÿ î ìåòðè÷åñêèõ ïðîñòðàí-

ñòâàõ ñ ìåðîé, ñëàáîì íåðàâåíñòâå Ïóàíêàðå è åìêîñòè êîíäåíñàòîðîâ â

ïðîñòðàíñòâàõ Ñîáîëåâà.

Â ðàçä. 3 óñòàíàâëèâàþòñÿ îñíîâíûå ñâîéñòâà åìêîñòíîé ìåòðè÷åñêîé

�óíêöèè: ïðè îïðåäåëåííûõ ïîêàçàòåëÿõ åìêîñòíàÿ ìåòðè÷åñêàÿ �óíê-

öèÿ � ìåòðèêà; ïðèâåäåíû ñâîéñòâà �óíäàìåíòàëüíûõ â åìêîñòíîé ìåòðè-

êå ïîñëåäîâàòåëüíîñòåé; ïîëó÷åíî îïèñàíèå åìêîñòíûõ ãðàíè÷íûõ ýëåìåí-

òîâ â îáëàñòÿõ ñî ñâîéñòâîì ïðîäîëæåíèÿ, â îáëàñòÿõ ñ ãðàíèöåé, ñîñòîÿ-

ùåé èç äîñòèæèìûõ òî÷åê; ïðèâåäåíû ïðèìåðû ìåòðè÷åñêèõ ïðîñòðàíñòâ

ñ ìåðîé, äëÿ êîòîðûõ âûïîëíÿþòñÿ ðåçóëüòàòû ýòîãî ðàçäåëà.

Â ðàçä. 4 óñòàíîâëåíà òåîðåìà î ïðîäîëæåíèè ãîìåîìîð�èçìà, îáðàò-

íîãî ê Qq,p-ãîìåîìîð�èçìó, íà åìêîñòíóþ ãðàíèöó Hρ,p. Â êà÷åñòâå ñëåä-
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ñòâèÿ ïîëó÷åí àíàëîã òåîðåìû Ê¼áå äëÿ ãîìåîìîð�èçìîâ, îáðàòíûõ ê

Qq,p-ãîìåîìîð�èçìàì, â ìåòðè÷åñêèõ ïðîñòðàíñòâàõ ñ ìåðîé.

� 2. Ïðåäâàðèòåëüíûå ñâåäåíèÿ è îáîçíà÷åíèÿ

Ñèìâîëîì C áóäåì îáîçíà÷àòü íåêîòîðóþ êîíñòàíòó, êîòîðàÿ ìîæåò

èçìåíÿòüñÿ îò ñòðî÷êè ê ñòðî÷êå êîíòðîëèðóåìûì îáðàçîì.

2.1 Ìåòðè÷åñêèå ïðîñòðàíñòâà ñ ìåðîé

Ëåêöèè [33℄ ñîäåðæàò ââåäåíèå â àíàëèç íà ìåòðè÷åñêèõ ïðîñòðàí-

ñòâàõ.

Â ìåòðè÷åñêîì ïðîñòðàíñòâå (X, d) ñèìâîëîì B(x, r) îáîçíà÷àåì îò-

êðûòûé øàð, ò. å. B(x, r) = {x′ ∈ X | d(x, x′) < r}, è B(x, r) � çàìêíóòûé

øàð, ò. å. B(x, r) = {x′ ∈ X | d(x, x′) ≤ r}. Îòìåòèì, ÷òî âñåãäà èìååò ìå-
ñòî âêëþ÷åíèå clB(x, r) ⊂ B(x, r), ãäå clB(x, r) � çàìûêàíèå øàðà B(x, r).
Åñëè B � íåêîòîðûé øàð (îòêðûòûé èëè çàìêíóòûé), òî ñèìâîëîì λB,
ãäå λ > 0, îáîçíà÷àåì øàð òîãî æå òèïà, ÷òî è B, ñ öåíòðîì x0 è ðàäèóñîì

λr, ãäå x0 � öåíòð øàðà B, r � ðàäèóñ B.
�îâîðÿò, ÷òî X îáëàäàåò ñâîéñòâîì �åéíå � Áîðåëÿ, åñëè ëþáîå îãðà-

íè÷åííîå è çàìêíóòîå ìíîæåñòâî â X êîìïàêòíî.

Ìíîæåñòâî âñåõ ïîäìíîæåñòâ X îáîçíà÷àåòñÿ êàê P(X). Ïîä ñëîâîì

ìåðà èìååòñÿ â âèäó âíåøíÿÿ ìåðà, ò. å. �óíêöèÿ ìíîæåñòâ µ : P(X) →
[0,∞], òàêàÿ, ÷òî µ(∅) = 0 è µ ñ÷åòíî ñóáàääèòèâíà. Ïîä èçìåðèìîñòüþ

ïîíèìàåòñÿ èçìåðèìîñòü ïî Êàðàòåîäîðè.

Ìåðà µ â ìåòðè÷åñêîì ïðîñòðàíñòâå (X, d) íàçûâàåòñÿ ìåðîé Áîðåëÿ,

åñëè ëþáîå ìíîæåñòâî B èç áîðåëåâñêîé σ-àëãåáðû B(X) � µ-èçìåðèìîå
ìíîæåñòâî. Ìåðà µ íà X íàçûâàåòñÿ ðåãóëÿðíîé ìåðîé Áîðåëÿ, åñëè µ �

ìåðà Áîðåëÿ è äëÿ ëþáîãî ìíîæåñòâà A ⊂ X ñóùåñòâóåò ìíîæåñòâî B ∈
B(X) òàêîå, ÷òî A ⊂ B è µ(B) = µ(A). Ìåðà µ íàçûâàåòñÿ íåòðèâèàëüíîé,
åñëè µ(X) > 0. �îâîðÿò, ÷òî ìåðà µ ëîêàëüíî êîíå÷íà, åñëè äëÿ ëþáîé

òî÷êè x ∈ X ñóùåñòâóåò ðàäèóñ r > 0 òàêîé, ÷òî µ(B(x, r)) < ∞.

Â íàñòîÿùåé ðàáîòå ìåòðè÷åñêîå ïðîñòðàíñòâî ñ ìåðîé � ýòî òðîé-

êà (X, d, µ), ãäå (X, d) � ñåïàðàáåëüíîå ìåòðè÷åñêîå ïðîñòðàíñòâî è µ �

íåòðèâèàëüíàÿ è ëîêàëüíî êîíå÷íàÿ ðåãóëÿðíàÿ ìåðà Áîðåëÿ íà X . Èç

îïðåäåëåíèÿ ñëåäóåò, ÷òî ìåòðè÷åñêîå ïðîñòðàíñòâî ñ ìåðîé σ-êîíå÷íî.
Ñ�îðìóëèðóåì ñâîéñòâî ðåãóëÿðíûõ ìåð Áîðåëÿ.

Ëåììà 2.1. Ïóñòü µ � ðåãóëÿðíàÿ ìåðà Áîðåëÿ íà ìåòðè÷åñêîì ïðî-

ñòðàíñòâå (X, d). Òîãäà äëÿ ëþáîãî µ-èçìåðèìîãî ìíîæåñòâà A ⊂ X èìååò

ìåñòî ðàâåíñòâî

µ(A) = sup{µ(C) | C ⊂ A, C ⊂ X � çàìêíóòîå ìíîæåñòâî},
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åñëè B ⊂ X � ïðîèçâîëüíîå ìíîæåñòâî, òî

µ(B) = inf{µ(O) | B ⊂ O, O ⊂ X � îòêðûòîå ìíîæåñòâî}.

Äîêàçàòåëüñòâî ëåììû 2.1 ìîæíî íàéòè, íàïðèìåð, â [34, 35℄.

Ìåðà µ â ìåòðè÷åñêîì ïðîñòðàíñòâå ñ ìåðîé óäîâëåòâîðÿåò óñëîâèþ

óäâîåíèÿ, åñëè ñóùåñòâóåò ïîñòîÿííàÿ C > 0 òàêàÿ, ÷òî äëÿ ëþáûõ x ∈ X
è r > 0 âûïîëíÿåòñÿ

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

�îâîðÿò, ÷òî ïðîñòðàíñòâî (X, d, µ) Q-ðåãóëÿðíî ïî Àëü�îðñó, åñëè ñó-

ùåñòâóåò êîíñòàíòà C > 0 òàêàÿ, ÷òî äëÿ âñåõ x ∈ X è 0 < r < diamX
âûïîëíÿåòñÿ íåðàâåíñòâî

1

C
rQ ≤ µ(B(x, r)) ≤ CrQ.

Ïðîñòðàíñòâà Lp(E, µ), ãäå E ⊂ X � èçìåðèìîå ìíîæåñòâî è 1 ≤ p ≤
∞, îïðåäåëÿþòñÿ îáû÷íûì îáðàçîì. Ïðîñòðàíñòâî Lp

loc(E, µ) ñîñòîèò èç

òàêèõ �óíêöèé f , ÷òî äëÿ ëþáîé òî÷êè x ∈ E ñóùåñòâóåò îêðåñòíîñòü U ,
÷òî f ∈ Lp(E ∩ U, µ).

2.2 Ìîäóëü ñåìåéñòâà êðèâûõ

ÏóñòüM(X)� ñåìåéñòâî âñåõ íåïîñòîÿííûõ ñïðÿìëÿåìûõ êðèâûõ âX .

Îòìåòèì, ÷òî â íåêîòîðûõ ñëó÷àÿõ ìíîæåñòâî M(X) ìîæåò áûòü ïóñòûì:
íàïðèìåð, åñëè X � êàíòîðîâî ìíîæåñòâî C(λ), 0 < λ < 1/2, èëè ëþáîå

âïîëíå íåñâÿçíîå ìíîæåñòâî; êðèâàÿ Êîõà K èëè ëþáîå ïðîñòðàíñòâî òèïà

ñíåæèíêè

1

.

Äëÿ ïîäñåìåéñòâà Γ ⊂ M(X) îáîçíà÷èì ñèìâîëîì F (Γ) âñå áîðåëåâ-
ñêèå �óíêöèè ̺ : X → [0,∞] òàêèå, ÷òî

∫

γ

̺ ds ≥ 1 äëÿ âñåõ γ ∈ Γ.

Èíòåãðàë

∫
γ

̺ ds ïîíèìàåòñÿ â ñëåäóþùåì ñìûñëå: ïóñòü γ̃ � íàòóðàëüíàÿ

ïàðàìåòðèçàöèÿ γ è ℓ(γ) � äëèíà êðèâîé, òîãäà ïîëàãàåì

∫

γ

̺ ds =

ℓ(γ)∫

0

̺(γ̃(t)) dt.

1

Ìåòðè÷åñêîå ïðîñòðàíñòâî (X, d) íàçûâàåòñÿ ïðîñòðàíñòâîì òèïà ñíåæèíêè

(snow�ake spa
e), åñëè íåêîòîðàÿ ñòåïåíü ìåòðèêè d1+ε
, ε > 0, � ñíîâà ìåòðèêà.
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Äëÿ êàæäîãî 1 ≤ p < ∞ îïðåäåëèì p-ìîäóëü ñåìåéñòâà êðèâûõ Γ �îðìó-

ëîé

Mp(Γ) = inf
̺∈F (Γ)

∫

X

̺p dµ.

Åñëè ìíîæåñòâî �óíêöèé F (Γ) ïóñòî, òî ïîëàãàåì Mp(Γ) = +∞.

Áóäåì ãîâîðèòü, ÷òî íåêîòîðîå ñâîéñòâî âûïîëíÿåòñÿ äëÿMp-ï. â. êðè-

âûõ, åñëè ýòî ñâîéñòâî âûïîëíÿåòñÿ äëÿ âñåõ êðèâûõ γ ∈ M(X) \ Γ, ãäå
Mp(Γ) = 0.

Äîêàçàòåëüñòâà îñíîâíûõ ñâîéñòâ ìîäóëÿ ñåìåéñòâà êðèâûõ ìîæíî

íàéòè, íàïðèìåð, â [33, 35, 36℄.

2.3 Ïðîñòðàíñòâà Ñîáîëåâà

Áóäåì ðàññìàòðèâàòü ïðîñòðàíñòâà Ñîáîëåâà, îïðåäåëåííûå ñ ïîìî-

ùüþ ìåòðè÷åñêîãî âàðèàíòà �îðìóëû Íüþòîíà � Ëåéáíèöà. Ââåäåì íåîá-

õîäèìûå ïîíÿòèÿ.

Ïóñòü u : X → R � �óíêöèÿ. Áîðåëåâñêàÿ �óíêöèÿ g : X → [0,+∞]
íàçûâàåòñÿ âåðõíèì ãðàäèåíòîì äëÿ u, åñëè

|u(x)− u(y)| ≤

∫

γ

g ds (1)

äëÿ âñåõ ñïðÿìëÿåìûõ êðèâûõ γ ∈ M(X) ñ êîíöåâûìè òî÷êàìè x, y ∈ X .

Ôóíêöèÿ g íàçûâàåòñÿ p-ñëàáûì âåðõíèì ãðàäèåíòîì, åñëè (1) âûïîëíÿ-

åòñÿ äëÿ Mp-ï. â. êðèâûõ γ.
Åñëè u : Ω → R è Ω � îòêðûòîå ïîäìíîæåñòâî X , òî �óíêöèÿ g íàçû-

âàåòñÿ âåðõíèì ãðàäèåíòîì äëÿ u â Ω, åñëè g � âåðõíèé ãðàäèåíò äëÿ u â

ìåòðè÷åñêîì ïðîñòðàíñòâå ñ ìåðîé (Ω, d|Ω×Ω, µΩ), ãäå µΩ(A) = µ(Ω∩A) äëÿ
ëþáîãî ìíîæåñòâà A ⊂ X (ñì., íàïðèìåð, [35, ëåììà 3.3.11℄). Àíàëîãè÷íî

îïðåäåëÿåòñÿ p-ñëàáûé âåðõíèé ãðàäèåíò â Ω ⊂ X .

Ïóñòü 1 ≤ p < ∞. Ïðîñòðàíñòâî Ñîáîëåâà D1,p(Ω), ãäå Ω � îòêðûòîå

ìíîæåñòâî â X , ñîñòîèò èç èçìåðèìûõ �óíêöèé u : Ω → R, îáëàäàþùèõ

p-ñëàáûì âåðõíèì ãðàäèåíòîì êëàññà Lp(Ω, µ) â Ω.
Â ñëó÷àå (X, d, µ) = (Rn, | · |,L n) ïðîñòðàíñòâî D1,p(Ω) ñîâïàäàåò íà

îòêðûòûõ ìíîæåñòâàõ Ω ñ ïðîñòðàíñòâîì L1,p(Ω) (ïðîñòðàíñòâî L1,p(Ω)
ñîñòîèò èç ëîêàëüíî èíòåãðèðóåìûõ �óíêöèé, îáëàäàþùèõ ïðîèçâîäíû-

ìè â ñìûñëå Ñîáîëåâà êëàññà Lp
), ñì., íàïðèìåð, [35, ïðåäëîæåíèå 7.1.2℄.

�àâåíñòâî D1,p(Ω) = L1,p(Ω) îñíîâûâàåòñÿ íà ëîêàëüíîì íåðàâåíñòâå Ïó-

àíêàðå, ïîýòîìó îíî âåðíî êàê íà ãðóïïàõ Êàðíî, òàê è íà ðèìàíîâûõ

ìíîãîîáðàçèÿõ.
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Â ñèëó [35, òåîðåìà 6.3.20℄ ñóùåñòâóåò åäèíñòâåííûé p-ñëàáûé âåðõíèé
ãðàäèåíò äëÿ �óíêöèè u ∈ D1,p(X) ñ ìèíèìàëüíîé Lp

-íîðìîé, êîòîðûé

äàëåå îáîçíà÷àåì ñèìâîëîì |∇pu|. Â ïðîñòðàíñòâå D1,p
ââîäèòñÿ ïîëóíîð-

ìà �îðìóëîé

‖u | D1,p(X)‖ = inf
gu

‖gu | Lp(X)‖ = ‖|∇pu| | L
p(X)‖,

ãäå èí�èìóì áåðåòñÿ ïî âñåì âåðõíèì ãðàäèåíòàì gu äëÿ u.
Ïðîñòðàíñòâî D1,p

loc(X) ñîñòîèò èç èçìåðèìûõ �óíêöèé u : X → R òà-

êèõ, ÷òî äëÿ ëþáîé òî÷êè x ∈ X ñóùåñòâóåò îêðåñòíîñòü Ux òî÷êè x
òàêàÿ, ÷òî u ∈ D1,p(Ux). Ïðîñòðàíñòâî N1,p(X) ñîñòîèò èç âñåõ �óíêöèé

u ∈ Lp(X)∩D1,p(X). Íîðìà â ïðîñòðàíñòâå N1,p(X) îïðåäåëÿåòñÿ �îðìó-
ëîé

‖u | N1,p(X)‖ = ‖u | Lp(X)‖+ ‖u | D1,p(X)‖.

Äëÿ îòêðûòîãî ïîäìíîæåñòâà Ω ⊂ X ïðîñòðàíñòâà D1,p(Ω), D1,p
loc(Ω),

N1,p(Ω) è N1,p
loc (Ω) îïðåäåëÿþòñÿ àíàëîãè÷íî.

Îòìåòèì òàêæå ñëåäóþùèå ðàáîòû î ïðîñòðàíñòâàõ Ñîáîëåâà íà ìåò-

ðè÷åñêèõ ïðîñòðàíñòâàõ ñ ìåðîé: â [36℄ îïèñàíû ðàçëè÷íûå ïîäõîäû ê

îïðåäåëåíèþ ïðîñòðàíñòâ Ñîáîëåâà; â [37℄ äîêàçàíà ýêâèâàëåíòíîñòü íåêî-

òîðûõ îïðåäåëåíèé ïðè ìèíèìàëüíûõ îãðàíè÷åíèÿõ íà ïðîñòðàíñòâà.

2.4 Îòîáðàæåíèÿ êëàññà �åøåòíÿêà

Ñëåäóþùåå îïðåäåëåíèå â ñëó÷àå îòîáðàæåíèé èç åâêëèäîâà ïðîñòðàí-

ñòâà â ìåòðè÷åñêîå èçíà÷àëüíî áûëî ââåäåíî â ðàáîòå [38℄.

Îïðåäåëåíèå 2.2. Ïóñòü (X, d, µ)�ìåòðè÷åñêîå ïðîñòðàíñòâî ñ ìåðîé,

(Y, δ) � ìåòðè÷åñêîå ïðîñòðàíñòâî. Èçìåðèìîå îòîáðàæåíèå ϕ : X → Y
ïðèíàäëåæèò êëàññó �åøåòíÿêà D1,p(X ; Y ), 1 ≤ p < ∞, åñëè ñóùåñòâó-

åò �óíêöèÿ w ∈ Lp(X) òàêàÿ, ÷òî äëÿ ëþáîé �óíêöèè uz(y) = δ(y, z),
z ∈ Y , êîìïîçèöèÿ [ϕ]z = uz ◦ ϕ ïðèíàäëåæèò ïðîñòðàíñòâó D1,p(X), è
âûïîëíÿåòñÿ ïîòî÷å÷íîå ñîîòíîøåíèå

|∇p[ϕ]z| ≤ w µ-ï. â. â X . (2)

�îâîðÿò, ÷òî èçìåðèìîå îòîáðàæåíèå ϕ ïðèíàäëåæèò êëàññó �åøåò-

íÿêà D1,p
loc(X ; Y ), åñëè äëÿ ëþáîé òî÷êè x ∈ X ñóùåñòâóåò îêðåñòíîñòü Ux

â X òàêàÿ, ÷òî ϕ ∈ D1,p(Ux; Y ).

Ïðèìåíÿÿ ðåçóëüòàòû òåîðèè K-ïðîñòðàíñòâ, âûâîäèì ñóùåñòâîâàíèå

íàèìåíüøåé (â ñìûñëå Lp
-íîðìû) �óíêöèè w0, óäîâëåòâîðÿþùåé íåðàâåí-

ñòâó (2) (ñì. [38, � 1.4℄). Ôóíêöèþ w0 áóäåì îáîçíà÷àòü ñèìâîëîì |Dpϕ| è
íàçûâàòü âåðõíèì ãðàäèåíòîì îòîáðàæåíèÿ ϕ.
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Ïðåäëîæåíèå 2.3. Ïóñòü (X, d, µ) � ìåòðè÷åñêîå ïðîñòðàíñòâî ñ

ìåðîé, (Y, δ) � ñåïàðàáåëüíîå ìåòðè÷åñêîå ïðîñòðàíñòâî, ϕ : X → Y �

èçìåðèìîå îòîáðàæåíèå è 1 ≤ p < ∞. Òîãäà ñëåäóþùèå óñëîâèÿ ýêâèâà-

ëåíòíû:
(a) ϕ ∈ D1,p(X ; Y ),

(b) äëÿ ñ÷¼òíîãî âñþäó ïëîòíîãî â Y ïîäìíîæåñòâà (zj)j∈N �óíêöèè

[ϕ]zj ïðèíàäëåæàò D1,p(X), è ñóùåñòâóåò áîðåëåâñêàÿ �óíêöèÿ w ∈ Lp(X)
òàêàÿ, ÷òî âûïîëíÿåòñÿ ïîòî÷å÷íàÿ îöåíêà

|∇p[ϕ]zj | ≤ w µ-ï. â. â X ,

(c) ñóùåñòâóåò áîðåëåâñêàÿ �óíêöèÿ w ∈ Lp(X) òàêàÿ, ÷òî

δ(ϕ(x), ϕ(x′)) ≤

∫

γ

w ds

äëÿ Mp-ï. â. êðèâûõ γ ∈ M(X) ñ êîíöåâûìè òî÷êàìè x, x′ ∈ X .

(d) ñóùåñòâóåò áîðåëåâñêàÿ �óíêöèÿ ŵ ∈ Lp(X) òàêàÿ, ÷òî äëÿ ëþ-

áîé u ∈ 1-Lip(Y ) êîìïîçèöèÿ u ◦ ϕ ïðèíàäëåæèò D1,p(X), è âûïîëíÿåòñÿ

ïîòî÷å÷íàÿ îöåíêà

|∇p(u ◦ ϕ)| ≤ ŵ µ-ï. â. â X .

Ïðè÷åì íàèìåíüøèå �óíêöèè w, w è ŵ µ-ï. â. ñîâïàäàþò ñ |Dpϕ|.

Ïðåäëîæåíèå 2.3 äîêàçàíî â [30, Ïðåäëîæåíèå 2.21℄.

2.5 Ñëàáîå íåðàâåíñòâî Ïóàíêàðå

�îâîðÿò, ÷òî ìåòðè÷åñêîå ïðîñòðàíñòâî ñ ìåðîé äîïóñêàåò ñëàáîå p-
íåðàâåíñòâî Ïóàíêàðå, åñëè ñóùåñòâóþò êîíñòàíòû C > 0 è τ ≥ 1 òàêèå,
÷òî äëÿ ëþáîãî øàðà B ⊂ X è ëþáîé �óíêöèè u : X → R è ëþáîãî

âåðõíåãî ãðàäèåíòà g äëÿ u âûïîëíÿåòñÿ íåðàâåíñòâî:

µ(B)−1

∫

B

|u− uB| dµ ≤ C diamB

(
µ(τB)−1

∫

τB

gp dµ

) 1

p

,

ãäå uB � ñðåäíåå çíà÷åíèå u íà B: uB = µ(B)−1
∫
B

u dµ. Äàëåå áóäåì ãîâî-

ðèòü ïðîñòî ¾p-íåðàâåíñòâî Ïóàíêàðå¿ âìåñòî ¾ñëàáîå p-íåðàâåíñòâî Ïó-
àíêàðå¿.
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Î÷åâèäíî, ÷òî åñëè ïðîñòðàíñòâî äîïóñêàåò p-íåðàâåíñòâî Ïóàíêàðå,

òî îíî äîïóñêàåò q-íåðàâåíñòâî Ïóàíêàðå äëÿ ëþáîãî q ≥ p. Âåðíî è îáðàò-
íîå: åñëè X � ïîëíîå ïðîñòðàíñòâî, µ îáëàäàåò ñâîéñòâîì óäâîåíèÿ è ïðî-

ñòðàíñòâî äîïóñêàåò p-íåðàâåíñòâî Ïóàíêàðå äëÿ íåêîòîðîãî 1 < p < ∞,

òî ñóùåñòâóåò 1 ≤ q < p òàêîå, ÷òî X äîïóñêàåò q-íåðàâåíñòâî Ïóàíêàðå,
ñì. [39℄.

Íàïîìíèì, ÷òî ìåòðè÷åñêîå ïðîñòðàíñòâî X íàçûâàåòñÿ êâàçèâûïóê-

ëûì, åñëè ñóùåñòâóåò êîíñòàíòà Cq > 0 òàêàÿ, ÷òî ëþáóþ ïàðó òî÷åê x,
y ìîæíî ñîåäèíèòü êðèâîé γ, äëèíà êîòîðîé óäîâëåòâîðÿåò íåðàâåíñòâó

ℓ(γ) ≤ Cqd(x, y).

Åñëè X � ïîëíîå ìåòðè÷åñêîå ïðîñòðàíñòâî ñ ìåðîé, µ óäîâëåòâîðÿ-

åò óñëîâèþ óäâîåíèÿ, è, êðîìå òîãî, X äîïóñêàåò p-íåðàâåíñòâî Ïóàíêàðå
ïðè 1 ≤ p < ∞, òî X � êâàçèâûïóêëîå ìåòðè÷åñêîå ïðîñòðàíñòâî. Äîêà-

çàòåëüñòâî ýòîãî óòâåðæäåíèÿ ìîæíî íàéòè, íàïðèìåð, â [40℄.

Â ïðîñòðàíñòâàõ, óäîâëåòâîðÿþùèõ íåðàâåíñòâó Ïóàíêàðå, âûïîëíÿ-

åòñÿ òåîðåìà î ïðîäîëæåíèè N1,p
-�óíêöèè, îïðåäåëåííûõ â ðàâíîìåðíûõ

îáëàñòÿõ. Ïðèâåäåì íåîáõîäèìûå ïîíÿòèÿ.

�îâîðÿò, ÷òî Ω � ðàâíîìåðíàÿ îáëàñòü, åñëè ñóùåñòâóåò êîíñòàíòà

Cu < ∞ òàêàÿ, ÷òî ëþáûå äâå òî÷êè x, y ∈ Ω ìîæíî ñîåäèíèòü êðè-

âîé γ ⊂ Ω, ïðè÷åì ℓ(γ) ≤ Cud(x, y) è äëÿ ëþáûõ z ∈ γ âûïîëíÿåòñÿ

íåðàâåíñòâî

min(ℓ(γx,z), ℓ(γz,y)) ≤ Cu dist(z,X \ Ω),

ãäå γx,z � íàèìåíüøàÿ ïîäêðèâàÿ â γ, ñîåäèíÿþùàÿ òî÷êè x è z.

Îáëàñòü Ω îáëàäàåò ñâîéñòâîì ïðîäîëæåíèÿ äëÿ ïðîñòðàíñòâà N1,p
,

åñëè ñóùåñòâóåò îãðàíè÷åííûé îïåðàòîð E : N1,p(Ω) → N1,p(X) òàêîé, ÷òî
Ef = f µ-ï. â. â Ω äëÿ ëþáîé �óíêöèè f ∈ N1,p(Ω).

Ñëåäóþùåå ïðåäëîæåíèå äîêàçàíî â [41, Ïðåäëîæåíèå 5.9℄.

Ïðåäëîæåíèå 2.4 ([41℄). Ïóñòü X óäîâëåòâîðÿåò p-íåðàâåíñòâó Ïó-

àíêàðå ïðè 1 ≤ p < ∞. Òîãäà ëþáàÿ ðàâíîìåðíàÿ îáëàñòü â X îáëàäàåò

ñâîéñòâîì ïðîäîëæåíèÿ äëÿ ïðîñòðàíñòâà N1,p
.

2.6 Åìêîñòü êîíäåíñàòîðà

Êàê îáû÷íî, îáëàñòü � îòêðûòîå ñâÿçíîå ïîäìíîæåñòâî â X . �îâîðÿò,

÷òî E � êîíòèíóóì, åñëè E � êîìïàêòíîå ñâÿçíîå ïîäìíîæåñòâî â X ;

åñëè êîíòèíóóì E ñîäåðæèò õîòÿ áû äâå òî÷êè, òî E � íåâûðîæäåííûé

êîíòèíóóì.

Ïóñòü 1 ≤ p < ∞, E, F � êîíòèíóóìû â îòêðûòîì ïîäìíîæåñòâå Ω.
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Åìêîñòü êîíäåíñàòîðà E = (E, F ) îïðåäåëÿåòñÿ �îðìóëîé

capp(E ; Ω) = inf

∫

Ω

gpu dµ,

ãäå èí�èìóì áåðåòñÿ ïî âñåì âåðõíèì ãðàäèåíòàì gu äëÿ �óíêöèé u : Ω →
R òàêèõ, ÷òî u|E ≥ 1 è u|F ≤ 0. Òàêèå �óíêöèè u áóäåì íàçûâàòü äîïó-

ñòèìûìè �óíêöèÿìè äëÿ êîíäåíñàòîðà E .
�àññìàòðèâàÿ ðàçëè÷íûå êëàññû äîïóñòèìûõ �óíêöèé, ìîæíî îïðåäå-

ëèòü ðàçëè÷íûå åìêîñòè êîíäåíñàòîðîâ, íàïðèìåð, òðåáîâàòü íåïðåðûâ-

íîñòü �óíêöèè u. Âñåãäà èìåþò ìåñòî ñëåäóþùèå ñîîòíîøåíèÿ:

capp(E ; Ω) ≤ cap(E ;D1,p(Ω))

≤ cap(E ;D1,p(Ω) ∩ C(Ω)) ≤ cap(E ;D1,p(Ω) ∩ Liploc(Ω)). (3)

Ïðè äîïîëíèòåëüíûõ òðåáîâàíèÿõ íà ïðîñòðàíñòâî â ñîîòíîøåíèÿõ (3)

âûïîëíÿåòñÿ ðàâåíñòâî.

Ïðåäëîæåíèå 2.5 ([42, Òåîðåìà 1.1℄). Ïóñòü X � ìåòðè÷åñêîå ïðî-

ñòðàíñòâî ñ ìåðîé, µ îáëàäàåò ñâîéñòâîì óäâîåíèÿ, X îáëàäàåò ñâîéñòâîì

�åéíå � Áîðåëÿ è â X âûïîëíÿåòñÿ p-íåðàâåíñòâî Ïóàíêàðå äëÿ íåêîòîðî-
ãî 1 < p < ∞. Åñëè Ω � îáëàñòü, E, F � íåïåðåñåêàþùèåñÿ êîíòèíóóìû

â Ω, òî âûïîëíÿþòñÿ ñëåäóþùèå ðàâåíñòâà:

Mp(∆(E, F,Ω)) = capp(E ; Ω)

= cap(E ;D1,p(Ω) ∩ C(Ω)) = cap(E ;D1,p(Ω) ∩ Liploc(Ω)),

ãäå E � êîíäåíñàòîð (E, F ) è ∆(E, F,Ω) � ñåìåéñòâî âñåõ ñïðÿìëÿåìûõ

êðèâûõ â Ω, ñîåäèíÿþùèõ E è F .

Î÷åâèäíî, ÷òî åìêîñòü êîíäåíñàòîðà ìîíîòîííà ïî âêëþ÷åíèþ ïëàñòèí

êîíäåíñàòîðà è îáúåìëþùèõ îáëàñòåé.

2.7 Îöåíêè åìêîñòè êîíäåíñàòîðîâ

Â ðàáîòå [43℄ áûëè ïîëó÷åíû îöåíêè íà ìîäóëü ñåìåéñòâà êðèâûõ, ñî-

åäèíÿþùèõ ïëàñòèíû êîíöåíòðè÷åñêîãî ñ�åðè÷åñêîãî êîíäåíñàòîðà. Èñ-

ïîëüçóÿ ïðåäëîæåíèå 2.5, ñ�îðìóëèðóåì ýòè îöåíêè â íóæíîé íàì �îðìå.

Äàëåå â ýòîì ïàðàãðà�å (X, d, µ) � ëîêàëüíî ñâÿçíîå ïðîñòðàíñòâî ñî

ñâîéñòâîì �åéíå � Áîðåëÿ, X � Q-ðåãóëÿðíî ïî Àëü�îðñó, Q ≥ 2, â X
âûïîëíÿåòñÿ p0-íåðàâåíñòâî Ïóàíêàðå äëÿ íåêîòîðîãî p0.
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Ïðåäëîæåíèå 2.6 ([43, Òåîðåìà 3.1℄). Ïóñòü 0 < 2r < R. Îáîçíà÷èì
E = (B(x, r), ∂B(x,R)). Òîãäà ïðè 1 ≤ p < Q âûïîëíÿåòñÿ îöåíêà ñâåðõó

cap(E ;D1,p(B(x,R))) ≤ K
C(R, r/4)

C(R, 2r)p
,

ãäå C(R, r) = (2α−2)−1(r1−α−R1−α), α = Q−1
p−1

è K � íåêîòîðàÿ êîíñòàíòà,

çàâèñÿùàÿ îò ïàðàìåòðîâ ïðîñòðàíñòâà X . Ïðè p = Q âûïîëíÿåòñÿ îöåíêà

cap(E ;D1,p(B(x,R))) ≤ K ′

(
ln

R

r

)1−Q

,

ãäå K ′
� íåêîòîðàÿ ïîñòîÿííàÿ, çàâèñÿùàÿ îò ïàðàìåòðîâ ïðîñòðàíñòâà

X .

Çàìå÷àíèå 2.7. Îòìåòèì, ÷òî åñëè Ek ⊂ B(x, rk) ⊂ B(x,R) äëÿ �èêñè-
ðîâàííîãî x è rk → 0 ïðè k → ∞, òî â ñèëó ïðåäëîæåíèÿ 2.6 âûïîëíÿåòñÿ

ñîîòíîøåíèå cap((Ek, F );D1,p(B(x,R))) → 0 ïðè k → ∞, ãäå 1 ≤ p ≤ Q.

Òàêæå èìååò ìåñòî ñëåäóþùàÿ îöåíêà ñíèçó (íàïîìíèì, ÷òî Q ≥ 2 �
ïîêàçàòåëü ðåãóëÿðíîñòè ïî Àëü�îðñó, â ïðîñòðàíñòâå X âûïîëíÿåòñÿ p0-
íåðàâåíñòâî Ïóàíêàðå).

Ïðåäëîæåíèå 2.8 ([43, Ïðåäëîæåíèå 4.7℄). Äîïóñòèì, ÷òî Q−1 < p0 ≤
Q. Ïóñòü òàêæå E, F � êîíòèíóóìû, ñîäåðæàùèåñÿ â øàðå B(x,R) ⊂ X ,

E = (E, F ). Òîãäà ïðè p0 ≤ p ≤ Q èìååò ìåñòî ñëåäóþùàÿ îöåíêà ñíèçó:

cap(E ;D1,p(X)) ≥
1

K ′′

min{diamE, diamF}

R1+p−Q
,

ãäå êîíñòàíòà K ′′ ≥ 1 çàâèñèò ëèøü îò ïàðàìåòðîâ ïðîñòðàíñòâà X .

Çàìå÷àíèå 2.9. Äîïóñòèì, ÷òî Q−1 < p0 ≤ p ≤ Q è (Ek)k∈N, F , diamF >
0, ñóòü êîíòèíóóìû, ñîäåðæàùèåñÿ â øàðå B(x,R) äëÿ íåêîòîðûõ x ∈ X ,

R < ∞. Òîãäà ââèäó ïðåäëîæåíèÿ 2.8 èç ñõîäèìîñòè

cap((Ek, F );D1,p(X)) → 0 ïðè k → ∞

ñëåäóåò ñõîäèìîñòü diamEk → 0 ïðè k → ∞.

� 3. �ìêîñòíàÿ ìåòðè÷åñêàÿ �óíêöèÿ

Çäåñü è äàëåå (X, d, µ) � ëîêàëüíî ñâÿçíîå ïðîñòðàíñòâî ñî ñâîéñòâîì

�åéíå � Áîðåëÿ, X � Q-ðåãóëÿðíî ïî Àëü�îðñó, Q ≥ 2, â X âûïîëíÿåòñÿ

p0-íåðàâåíñòâî Ïóàíêàðå äëÿ Q− 1 < p0 ≤ Q. Â ñèëó òåîðåìû Ìàçóðêåâè-

÷à � Ìóðà � Ìåíãåðà ïðîñòðàíñòâî (X, d) ëîêàëüíî ëèíåéíî ñâÿçíî (ñì.,
íàïðèìåð, [44, �ë. 6, � 50(II), òåîðåìà 1℄); ëîêàëüíàÿ ëèíåéíàÿ ñâÿçíîñòü

ïðîñòðàíñòâà X òàêæå ñëåäóåò èç âûïîëíåíèÿ íåðàâåíñòâà Ïóàíêàðå (ñì.

� 2.5).
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3.1 Ñâîéñòâà åìêîñòíîé ìåòðè÷åñêîé �óíêöèè

Íà÷íåì ñ äîêàçàòåëüñòâà ëåììû î ñâÿçè åìêîñòè è äèàìåòðà ïëàñòèí.

Áëàãîäàðÿ ëåììå 3.1 ñõîäèìîñòü ïî åìêîñòíîé ìåòðèêå áóäåò ýêâèâàëåíòíà

ñõîäèìîñòè ïî îáúåìëþùåé ìåòðèêå d. Ïåðâîíà÷àëüíîå äîêàçàòåëüñòâî

ëåììû 3.1 (â ñëó÷àå åâêëèäîâûõ ïðîñòðàíñòâ) ìîæíî íàéòè â ðàáîòå [25℄.

Ëåììà 3.1. Ïóñòü D � îáëàñòü â X , (Ek)k∈N � ïîñëåäîâàòåëüíîñòü

êîíòèíóóìîâ, ñîäåðæàùèõñÿ â øàðå B0, è F � �èêñèðîâàííûé íåâûðîæ-

äåííûé êîíòèíóóì. Ïðè óñëîâèè p0 ≤ p ≤ Q ñõîäèìîñòü

cap((Ek, F );D1,p(D)) → 0 ïðè k → ∞

èìååò ìåñòî òîãäà è òîëüêî òîãäà, êîãäà

diamEk → 0 ïðè k → ∞.

Äîêàçàòåëüñòâî. Íåîáõîäèìîñòü. Ïóñòü (uk)k∈N � ïîñëåäîâàòåëü-

íîñòü �óíêöèé òàêàÿ, ÷òî êàæäàÿ �óíêöèÿ uk äîïóñòèìà äëÿ êîíäåíñà-

òîðà (Ek, F ), k = 1, 2, . . . , è ñîîòâåòñòâóþùàÿ ïîñëåäîâàòåëüíîñòü âåðõíèõ
ãðàäèåíòîâ (gk)k∈N ñòðåìèòñÿ ê íóëþ â Lp(D, µ). Ââèäó ïðåäëîæåíèÿ 2.5

ìîæåì ñ÷èòàòü, ÷òî âñå �óíêöèè uk, k ∈ N, íåïðåðûâíû.
�àññìîòðèì êðèâóþ γ ⊂ D, ñîåäèíÿþùóþ B0 è F . Òàêàÿ êðèâàÿ â

îáëàñòè D ñóùåñòâóåò, òàê êàê (X, d) ëîêàëüíî ëèíåéíî ñâÿçíî, à D �

îáëàñòü. �àññìîòðèì îãðàíè÷åííóþ îáëàñòü (ε-ðàçäóòèå ìíîæåñòâà B0 ∪
γ ∪ F )

Dε = (1 + ε)B0 ∪
⋃

x∈γ

B(x, ε) ∪
⋃

y∈F

B(y, ε).

Â ñèëó ñâîéñòâà �åéíå � Áîðåëÿ ñóùåñòâóåò òàêîå ε > 0, ÷òî Dε ⋐ D.
Â ñèëó [45, Òåîðåìà 1.1℄ ñóùåñòâóåò ðàâíîìåðíàÿ îáëàñòü DO ⋐ D, ñî-
äåðæàùàÿ Dε. Òàê êàê ïðîñòðàíñòâî äîïóñêàåò p-íåðàâåíñòâî Ïóàíêàðå,

ñóùåñòâóåò îãðàíè÷åííûé îïåðàòîð ïðîäîëæåíèÿ E : N1,p(DO) → N1,p(X)
òàêîé, ÷òî Ef(x) = f(x) µ-ï. â. ïðè x ∈ DO, ñì. ïðåäëîæåíèå 2.4.

Îáîçíà÷èì ïðîäîëæåíèå �óíêöèè uk òåì æå ñèìâîëîì. Òîãäà âûïîë-

íÿåòñÿ ñîîòíîøåíèå

cap((Ek, F );D1,p(X)) → 0 ïðè k → ∞.

Ñ äðóãîé ñòîðîíû, òàê êàê êîíòèíóóìû Ek ñîäåðæàòñÿ â øàðå B0, ñóùå-

ñòâóåò íåêîòîðûé øàð BR ðàäèóñà R, ñîäåðæàùèé è øàð B0, è êîíòèíóóì

F . Â òàêîì ñëó÷àå èìååò ìåñòî îöåíêà (ñì. òåîðåìó 2.8)

cap((Ek, F );D1,p(X)) ≥
1

K ′′

min{diamEk, diamF}

R1+p−Q
.
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Îòñþäà çàêëþ÷àåì, ÷òî diamEk → 0 ïðè k → ∞ (ñì. òàêæå çàìå÷àíèå

2.9).

Äîñòàòî÷íîñòü. Äîïóñòèì ïðîòèâíîå: diam(Ek) → 0 è ñóùåñòâóåò

êîíñòàíòà β òàêàÿ, ÷òî âûïîëíÿåòñÿ íåðàâåíñòâî

capp(Ek, F,D) ≥ β > 0 äëÿ âñåõ k.

Òàê êàê diam(Ek) → 0 è ïðîñòðàíñòâî îáëàäàåò ñâîéñòâîì �åéíå � Áî-

ðåëÿ, ìîæíî ñ÷èòàòü, ÷òî íåêîòîðàÿ ïîäïîñëåäîâàòåëüíîñòü êîíòèíóóìîâ

(Ek)k∈N (îáîçíà÷åíà òåì æå ñèìâîëîì) ñîäåðæèòñÿ â äîñòàòî÷íî ìàëîì

øàðå Bε è ñóùåñòâóåò øàð Br òàêîé, ÷òî äîïîëíåíèå D \ Br ñîäåðæèò

�èêñèðîâàííûé êîíòèíóóì F . Èñïîëüçóÿ ìîíîòîííîñòü åìêîñòè è ïðåä-

ëîæåíèå 2.6 (ñì. òàêæå çàìå÷àíèå 2.7), ïðèõîäèì ê ïðîòèâîðå÷èþ.

Ôèêñèðóåì êîíòèíóóì F â îáëàñòè D òàêîé, ÷òî D \ F � ñâÿçíîå ìíî-

æåñòâî.

Îïðåäåëåíèå 3.2. Åìêîñòíàÿ ìåòðè÷åñêàÿ �óíêöèÿ ìåæäó òî÷êàìè

x, y èç D \ F îïðåäåëÿåòñÿ �îðìóëîé

ρp,F (x, y) = inf cap((γ, F );D1,p(D))1/p,

ãäå èí�èìóì áåðåòñÿ ïî åìêîñòÿì êîíäåíñàòîðîâ (γ, F ), ãäå γ � ïðîèç-

âîëüíàÿ êðèâàÿ â D \ F ñ êîíöåâûìè òî÷êàìè x, y ∈ D \ F .

Åìêîñòíàÿ ìåòðèêà îïðåäåëåíà â ðàáîòå [22℄, ñì. òàêæå [23℄, â åâêëèäî-

âîì ïðîñòðàíñòâå Rn
ñ êîí�îðìíûì ïîêàçàòåëåì p = n, â êîòîðûõ áûëè

ïîëó÷åíû áàçîâûå ñâîéñòâà ýòîé ìåòðèêè. Äàëüíåéøåå ïðèìåíåíèå äàí-

íîé êîíöåïöèè � ýòî ðàññìîòðåíèå âåñîâîé åìêîñòíîé ìåòðèêè â Rn
ïðè

n− 1 < p ≤ n (1 ≤ p ≤ 2, åñëè n = 2), ñì. [25℄.
Ïîêàæåì, ÷òî åìêîñòíàÿ ìåòðè÷åñêàÿ �óíêöèÿ � ìåòðèêà.

Òåîðåìà 3.3. Â ñëó÷àå p0 ≤ p ≤ Q ìåòðè÷åñêàÿ �óíêöèÿ ρp,F �

ìåòðèêà â îáëàñòè D \ F .

Äîêàçàòåëüñòâî. Ñèììåòðè÷íîñòü ρp,F (x, y) = ρp,F (y, x) î÷åâèäíî ñëå-
äóåò èç îïðåäåëåíèÿ.

Ïîêàæåì, ÷òî äëÿ ëþáûõ òî÷åê x, y, z ∈ D \ F âûïîëíåíî íåðàâåíñòâî

òðåóãîëüíèêà. Ïóñòü γ1 � êðèâàÿ ñ êîíöåâûìè òî÷êàìè x, y òàêàÿ, ÷òî

ρp,F (x, y)+ ε/2 ≥ cap((γ1, F );D1,p(D))
1

p
, è γ2 � êðèâàÿ ñ êîíöåâûìè òî÷êà-

ìè y, z, îáëàäàþùàÿ àíàëîãè÷íûì ñâîéñòâîì. Ïóñòü òàêæå u1, u2 � òàêèå

äîïóñòèìûå �óíêöèè äëÿ êîíäåíñàòîðîâ (γ1, F ) è (γ2, F ) ñîîòâåòñòâåííî,
÷òî

cap((γi, F );D1,p(D))1/p + ε/2 ≥

(∫

D

gpui
dµ

)1/p

(i = 1, 2).
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Òîãäà êðèâàÿ γ1∪γ2 ñîåäèíÿåò òî÷êè x, z è �óíêöèÿ u1+u2 äîïóñòèìà äëÿ

êîíäåíñàòîðà (γ1∪γ2, F ). Èñïîëüçóÿ ýòî, âûâîäèì ñëåäóþùèå ñîîòíîøåíèÿ

ρp,F (x, z) ≤ cap((γ1 ∪ γ2, F );D1,p(D))1/p

≤

(∫

D

gpu1+u2
dµ

)1/p

≤

(∫

D

gpu1
dµ

)1/p

+

(∫

D

gpu2
dµ

)1/p

≤ ρp,F (x, y) + ρp,F (y, z) + 2ε.

Â ñèëó ïðîèçâîëüíîñòè ε > 0 ïîëó÷àåì òðåáóåìîå.

Äîïóñòèì, ÷òî ρp,F (x, y) = 0, íî x 6= y. Òîãäà ñóùåñòâóþò êðèâûå (γl)l∈N
ñ êîíöåâûìè òî÷êàìè x, y äëÿ âñåõ l ∈ N òàêèå, ÷òî

cap((γl, F );D1,p(D)) → 0 ïðè l → ∞.

Ñ äðóãîé ñòîðîíû, òî÷êà x ñîäåðæèòñÿ â íåêîòîðîì øàðå B(x, r), ïðè
ýòîì, clB(x, r) íå ïåðåñåêàåòñÿ ñ òî÷êîé y. Ñëåäîâàòåëüíî, diam(γl) ≥ r,
÷òî ïðîòèâîðå÷èò ëåììå 3.1.

Îñòàëîñü ïîêàçàòü, ÷òî ρp,F (x, x) = 0. Â ñèëó êâàçèâûïóêëîñòè ïðî-

ñòðàíñòâà äëÿ ëþáîãî r > 0 â øàðå B(x, Cqr), ãäå Cq � êîíñòàíòà êâàçè-

âûïóêëîñòè, ñóùåñòâóåò çàìêíóòàÿ êðèâàÿ, ñîäåðæàùàÿ òî÷êó x. Åìêîñòü
êîíäåíñàòîðà (B(x, Cqr), F ) ñòðåìèòñÿ ê 0 ïðè r → 0 (ñì. ëåììó 3.1), ïî-

ýòîìó ρp,F (x, x) = 0.

Ñâÿçü òîïîëîãèè îáúåìëþùåãî ïðîñòðàíñòâà 
 òîïîëîãèåé, èíäóöèðî-

âàííîé åìêîñòíîé ìåòðèêîé, óñòàíîâëåíà â ñëåäóþùèõ óòâåðæäåíèÿõ.

Ëåììà 3.4. Ïóñòü y ∈ D \ F è yl ∈ D \ F , l = 1, 2, . . . , � íåêîòîðàÿ

ïîñëåäîâàòåëüíîñòü. Òîãäà ñëåäóþùèå óòâåðæäåíèÿ ýêâèâàëåíòíû

(a) ρp,F (yl, y) → 0 ïðè l → ∞,

(b) d(yl, y) → 0 ïðè l → ∞.

Äîêàçàòåëüñòâî. Ïóñòü ρp,F (yl, y) → 0 ïðè l → ∞. Äîïóñòèì ïðîòèâ-

íîå: ïîñëåäîâàòåëüíîñòü d(yl, y) íå ñòðåìèòñÿ ê íóëþ ïðè l → ∞. Çíà÷èò,

ñóùåñòâóåò ïîäïîñëåäîâàòåëüíîñòü (îáîçíà÷åíà òåì æå ñèìâîëîì (yl)l∈N)
òàêàÿ, ÷òî d(yl, y) ≥ β > 0 äëÿ íåêîòîðîãî ÷èñëà β. �àññìîòðèì êðèâûå γl
òàêèå, ÷òî

cap((γl, F );D1,p(D)) → 0 ïðè l → ∞.

Îáîçíà÷èì ñèìâîëîì γ̃l ñóæåíèå êðèâîé γl äî ¾ïåðâîãî âûõîäà¿ èç øàðà

B(y, r0), ñëåäîâàòåëüíî, diam γ̃l ≥ r0 è èìååò ìåñòî ñõîäèìîñòü

cap((γ̃l, F );D1,p(D)) → 0
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â ñèëó ìîíîòîííîñòè åìêîñòè. Ñ äðóãîé ñòîðîíû, ïî ëåììå 3.1 èìååò ìåñòî

ñõîäèìîñòü diam γ̃l → 0. Ïðèõîäèì ê ïðîòèâîðå÷èþ.

Ïóñòü d(yl, y) → 0 ïðè l → ∞. Ââåäåì â ðàññìîòðåíèå îêðåñòíîñòè

B(y, r). Òîãäà, íà÷èíàÿ ñ íåêîòîðîãî íîìåðà l0, âñå òî÷êè yl, l ≥ l0, ïî-
ïàäàþò â øàð B(y, r). Â ñèëó êâàçèâûïóêëîñòè ïðîñòðàíñòâà ñóùåñòâóþò

êðèâûå γl ⊂ B(y, Cqr) ñ êîíöåâûìè òî÷êàìè y è yl, äëÿ êîòîðûõ âûïîëíÿ-
åòñÿ îöåíêà

cap((γl, F );D1,p(D)) ≤ cap((B(y, Cqr), F );D1,p(D)),

ãäå ïîñëåäíÿÿ åìêîñòü ñòðåìèòñÿ ê 0 ïðè r → 0. Çíà÷èò, â ñèëó ëåììû 3.1

èìååò ìåñòî ñõîäèìîñòü ρp,F (yl, y) → 0 ïðè l → ∞.

Åñëè X � íåêîìïàêòíîå òîïîëîãè÷åñêîå ïðîñòðàíñòâî, îáîçíà÷èì ñèì-

âîëîì X îäíîòî÷å÷íóþ êîìïàêòè�èêàöèþ (êîìïàêòè�èêàöèþ Àëåêñàí-

äðîâà), ñì., íàïðèìåð, [44, ãë. 4, � 41(X), òåîðåìà 5℄. Ïðèñîåäèíåííóþ òî÷-

êó áóäåì îáîçíà÷àòü ñèìâîëîì ∞. Íàïîìíèì, ÷òî îêðåñòíîñòè òî÷êè ∞
ñóòü âñå äîïîëíåíèÿ âèäà X \K, ãäå K � ïðîèçâîëüíîå êîìïàêòíîå ìíî-

æåñòâî â X .

Ëåììà 3.5. Ïóñòü yl ∈ D \ F , l = 1, 2, . . . , � �óíäàìåíòàëüíàÿ ïîñëå-

äîâàòåëüíîñòü îòíîñèòåëüíî ìåòðèêè ρp,F è y � ÷àñòè÷íûé ïðåäåë (yl)l∈N
â òîïîëîãèè X . Òîãäà âûïîëíåíî ñëåäóþùåå:

(a) åñëè y ∈ D \ F , òî d(yl, y) → 0 ïðè l → ∞;

(b) åñëè y ∈ F , òî d(yl, y) → 0 ïðè l → ∞;

(c) åñëè y ∈ ∂D è ïîñëåäîâàòåëüíîñòü yl îãðàíè÷åíà, òî dist(yl, ∂D) → 0
ïðè l → ∞;

(d) åñëè y = ∞ è lim
l→∞

d(yl, x0) = ∞ äëÿ íåêîòîðîé òî÷êè x0 ∈ X, òî

yl → y ïðè l → ∞ â òîïîëîãèè X;

(e) åñëè y = ∞ è lim
l→∞

d(yl, x0) < ∞ äëÿ íåêîòîðîé òî÷êè x0 ∈ X , òî

dist(ylk , ∂D) → 0 ïðè k → ∞ äëÿ ëþáîé îãðàíè÷åííîé ïîäïîñëåäîâàòåëü-

íîñòè (ylk)k∈N.

Ëåììà 3.5 äîêàçûâàåòñÿ ñ ïîìîùüþ î÷åâèäíûõ ìîäè�èêàöèé ðàññóæ-

äåíèÿ, ïðèâåäåííîãî â [25, Ïðåäëîæåíèå 2.11℄.

3.2 Ïîïîëíåíèå îáëàñòè è ãðàíè÷íûå ýëåìåíòû

Ïóñòü F � �èêñèðîâàííûé êîíòèíóóì â îáëàñòè D òàêîé, ÷òî D \ F
ñâÿçíî è p0 ≤ p ≤ Q. Îáîçíà÷èì ñèìâîëîì Dρ,p ìåòðè÷åñêîå ïðîñòðàíñòâî
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D \ F ñ ìåòðèêîé ρp,F . Îïðåäåëèì îòíîøåíèå ýêâèâàëåíòíîñòè íà �óíäà-

ìåíòàëüíûõ â ìåòðèêå ρp,F ïîñëåäîâàòåëüíîñòÿõ (yl)l∈N, (zl)l∈N â Dρ,p ïî

ïðàâèëó

(yl)l∈N ∼ (zl)l∈N òîãäà è òîëüêî òîãäà, êîãäà lim
l→∞

ρp,F (yl, zl) = 0.

Òîãäà ìíîæåñòâî êëàññîâ ýêâèâàëåíòíûõ ïîñëåäîâàòåëüíîñòåé ñ ìåòðèêîé

ρp,F (h1, h2) = lim
l→∞

ρp,F (xl, yl),

ãäå (xl)l∈N, (yl)l∈N ñóòü ïðåäñòàâèòåëè êëàññîâ h1, h2 ñîîòâåòñòâåííî, îá-

ðàçóåò ìåòðè÷åñêîå ïðîñòðàíñòâî. Ïîëó÷åííîå ìåòðè÷åñêîå ïðîñòðàíñòâî

îáîçíà÷èì ñèìâîëîì Dρ,p. Ïî òåîðåìå Õàóñäîð�à (ñì. [46℄) ïðîñòðàíñòâî

Dρ,p � ïîëíîå ìåòðè÷åñêîå ïðîñòðàíñòâî. Äàëåå åñëè (xl)l∈N � �óíäàìåí-

òàëüíàÿ ïîñëåäîâàòåëüíîñòü â ìåòðèêå ρp,F , òî ñèìâîëîì [(xl)l∈N] áóäåì
îáîçíà÷àòü êëàññ ýêâèâàëåíòíîñòè äàííîé ïîñëåäîâàòåëüíîñòè.

Ñ�îðìóëèðóåì âîçìîæíîå ïîâåäåíèå ïðåäñòàâèòåëåé êëàññîâ â ïðî-

ñòðàíñòâå Dρ,p.

Òåîðåìà 3.6. Ïóñòü h ∈ Dρ,p � êëàññ ýêâèâàëåíòíîñòè ïîñëåäîâàòåëü-

íîñòåé è (yl)l∈N � ïðåäñòàâèòåëü êëàññà h. Òîãäà âîçìîæíî ñëåäóþùåå

ïîâåäåíèå (yl)l∈N:
(a) yl → y ∈ D \ F â ìåòðèêå d îáúåìëþùåãî ïðîñòðàíñòâà ïðè l → ∞,

è ïðåäåë y íå çàâèñèò îò âûáîðà ïðåäñòàâèòåëÿ (yl)l∈N;
(b) yl → y ∈ F â ìåòðèêå d îáúåìëþùåãî ïðîñòðàíñòâà ïðè l → ∞, è

ïðåäåë y íå çàâèñèò îò ïðåäñòàâèòåëÿ (yl)l∈N.
Â ïðîòèâíîì ñëó÷àå âûïîëíÿåòñÿ ñëåäóþùåå:
(c) åñëè ïîñëåäîâàòåëüíîñòü (yl)l∈N îãðàíè÷åíà â ìåòðèêå d, òî èìååò

ìåñòî ñõîäèìîñòü dist(yl, ∂D) → 0 ïðè l → ∞;
(d) åñëè lim

l→∞

d(yl, x0) < ∞ äëÿ íåêîòîðîé òî÷êè x0 ∈ D, òî âûïîëíÿåòñÿ

dist(ylk , ∂D
′) → 0 ïðè k → ∞

äëÿ ëþáîé îãðàíè÷åííîé ïîäïîñëåäîâàòåëüíîñòè (ylk)k∈N;
(e) åñëè lim

l→∞

d(yl, x0) = ∞ äëÿ íåêîòîðîé òî÷êè x0 ∈ D, òî ïîñëåäîâà-

òåëüíîñòü (yl)l∈N ñõîäèòñÿ ê òî÷êå y = ∞ â òîïîëîãèè ïðîñòðàíñòâà X.

Â äîêàçàòåëüñòâå òåîðåìû 3.6 ñëåäóåò ïðèìåíèòü ëåììó 3.5. Â ñëó-

÷àå åâêëèäîâûõ ïðîñòðàíñòâ äîêàçàòåëüñòâî òåîðåìû 3.6 ïðèâåäåíî â [25,

Ïðåäëîæåíèå 2.17℄.

Ïðè ïîïîëíåíèè D \ F ïî åìêîñòíîé ìåòðèêå ρp,F òî÷êè y ∈ D \ F
îòîæäåñòâëÿþòñÿ åñòåñòâåííûì îáðàçîì ñ êëàññîì ýêâèâàëåíòíîñòè ïî-

ñòîÿííîé ïîñëåäîâàòåëüíîñòè i(y) = (y, y, . . . ). Èç òåîðåìû 3.6 âûâîäèì,
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÷òî åñëè (yl)l∈N � ïðåäñòàâèòåëü êëàññà h ∈ Dρ,p è yl → y ∈ D \ F â

îáúåìëþùåé ìåòðèêå d ïðè l → ∞, òî h ñîâïàäàåò ñ êëàññîì [i(y)] ïîñëå-
äîâàòåëüíîñòè i(y).

Îáîçíà÷èì ñèìâîëîì [D] âñå êëàññû �óíäàìåíòàëüíûõ ïîñëåäîâàòåëü-

íîñòåé â åìêîñòíîé ìåòðèêå, ÷àñòè÷íûå ïðåäåëû êîòîðûõ â ìåòðèêå d îáú-
åìëþùåãî ïðîñòðàíñòâà ïðèíàäëåæàò D.

Îïðåäåëåíèå 3.7. Äîïîëíåíèå Hρ,p(D) = Dρ,p \ [D] íàçûâàåòñÿ åì-

êîñòíîé ãðàíèöåé îáëàñòè D. Ìåòðèêà íà Hρ,p(D) � ýòî ñóæåíèå ìåòðèêè

ρp,F .
Êëàññû ýêâèâàëåíòíîñòè â Hρ,p íàçûâàþòñÿ ãðàíè÷íûìè åìêîñòíûìè

ýëåìåíòàìè.

Îïðåäåëèì íîñèòåëü ãðàíè÷íîãî ýëåìåíòà.

Îïðåäåëåíèå 3.8. Ïóñòü h ∈ Hρ,p(D). Òîãäà íîñèòåëü S(h) ãðàíè÷-
íîãî ýëåìåíòà h � ñîâîêóïíîñòü âñåõ ÷àñòè÷íûõ ïðåäåëîâ ïðåäñòàâèòåëåé

(yl)l∈N â òîïîëîãèè ïðîñòðàíñòâà X .

Èç òåîðåìû 3.6 ñëåäóåò, ÷òî S(h) ⊂ ∂D ∪ {∞} äëÿ ëþáîãî ãðàíè÷íîãî

ýëåìåíòà h ∈ Hρ,p.

Ñëåäóþùèå óòâåðæäåíèÿ ñîäåðæàò îñíîâíûå ñâîéñòâà íîñèòåëåé ãðà-

íè÷íûõ ýëåìåíòîâ. Äîêàçàòåëüñòâî ýòèõ óòâåðæäåíèé â ìåòðè÷åñêèõ ïðî-

ñòðàíñòâàõ ñ ìåðîé ìîæåò áûòü ïîëó÷åíî àíàëîãè÷íî äîêàçàòåëüñòâó â

åâêëèäîâîì ñëó÷àå, ñì. [25℄.

Ïðåäëîæåíèå 3.9. Âåðíû ñëåäóþùèå óòâåðæäåíèÿ:
(a) íîñèòåëü ãðàíè÷íîãî ýëåìåíòà S(h) ñîâïàäàåò ñ ïåðåñå÷åíèåì

⋂

ε>0

cl(Bρ(h, ε) ∩D),

ãäå çàìûêàíèå áåðåòñÿ â òîïîëîãèè X ;

(b) åñëè ρp,F (h1, h2) = 0 äëÿ äâóõ ãðàíè÷íûõ ýëåìåíòîâ h1, h2 ∈ Hρ,p, òî

èõ íîñèòåëè ñîâïàäàþò S(h1) = S(h2).

Ïðåäëîæåíèå 3.10. Íîñèòåëü S(h) ëþáîãî ãðàíè÷íîãî ýëåìåíòà h ∈
Hρ,p ñâÿçåí â òîïîëîãèè X .

Ïðåäëîæåíèå 3.11. Ïóñòü S(h) � íîñèòåëü ãðàíè÷íîãî ýëåìåíòà

h ∈ Hρ,p(D). Òîãäà äëÿ ëþáîé ïîñëåäîâàòåëüíîñòè (yl)l∈N ∈ h èìååò ìåñòî

ñõîäèìîñòü yl → S(h) â òîïîëîãèè X .

Ñ�îðìóëèðóåì êðèòåðèé îäíîòî÷å÷íîãî íîñèòåëÿ.
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Ïðåäëîæåíèå 3.12. Ïóñòü h ∈ Hρ,p(D) � ãðàíè÷íûé ýëåìåíò. Íî-

ñèòåëü S(h) ñîñòîèò èç îäíîé òî÷êè òîãäà è òîëüêî òîãäà, êîãäà äëÿ ëþ-

áûõ �óíäàìåíòàëüíûõ ïîñëåäîâàòåëüíîñòåé (yl)l∈N, (xl)l∈N ∈ h ñóùåñòâó-

þò êðèâûå γl ñ êîíöåâûìè òî÷êàìè xl, yl äëÿ âñåõ l = 1, 2, . . . òàêèå, ÷òî
diam(γl) → 0 ïðè l → ∞.

3.3 �ðàíè÷íûå ýëåìåíòû â ðàçëè÷íûõ îáëàñòÿõ

Â äàííîì ïîäðàçäåëå ðàññìîòðèì êàê óñòðîåíû ãðàíè÷íûå ýëåìåíòû â

ðàçëè÷íûõ îáëàñòÿõ.

Ëåììà 3.4 ãàðàíòèðóåò, ÷òî ñõîäèìîñòü ê âíóòðåííèì òî÷êàì ïî åì-

êîñòíîé ìåòðèêå è ìåòðèêå d îáúåìëþùåãî ïðîñòðàíñòâà ðàâíîñèëüíû.

Ýòî íàáëþäåíèå ëåæèò â îñíîâå ñëåäóþùåãî óòâåðæäåíèÿ.

Ïðåäëîæåíèå 3.13. Ïóñòü D � îãðàíè÷åííàÿ îáëàñòü ñî ñâîéñòâîì

ïðîäîëæåíèÿ äëÿ ïðîñòðàíñòâà N1,p
. Òîãäà Hρ,p(D) = ∂D â ñëåäóþùåì

ñìûñëå: ëþáîé ãðàíè÷íûé ýëåìåíò èìååò îäíîòî÷å÷íûé íîñèòåëü è ëþáàÿ
òî÷êà ãðàíèöû ëåæèò â íîñèòåëå åìêîñòíîãî ãðàíè÷íîãî ýëåìåíòà.

Äîêàçàòåëüñòâî. Ïóñòü ρ � åìêîñòíàÿ ìåòðèêà â D, ρ̃ � åìêîñòíàÿ

ìåòðèêà â X . Òàê êàê D îáëàäàåò ñâîéñòâîì ïðîäîëæåíèÿ, âûïîëíÿþòñÿ

íåðàâåíñòâà

1

C
ρ̃(x, y) ≤ ρ(x, y) ≤ ρ̃(x, y)

äëÿ âñåõ x, y ∈ D \ F , ãäå F � �èêñèðîâàííûé êîíòèíóóì è C � íîðìà

îïåðàòîðà ïðîäîëæåíèÿ.

Èñïîëüçóÿ ëåììó 3.4 çàêëþ÷àåì, ÷òî ñõîäèìîñòü ïî åìêîñòíîé ìåòðèêå

ρ ðàâíîñèëüíà ñõîäèìîñòè ïî ìåòðèêå d â çàìûêàíèè clD.

Íàïðèìåð, ëþáàÿ ðàâíîìåðíàÿ îáëàñòü îáëàäàåò ñâîéñòâîì ïðîäîëæå-

íèÿ (ñì. ïðåäëîæåíèå 2.4), ïîýòîìó äëÿ ðàâíîìåðíûõ îáëàñòåé â ïðîñòðàí-

ñòâàõ ñ p-íåðàâåíñòâîì Ïóàíêàðå åìêîñòíàÿ ãðàíèöà è òîïîëîãè÷åñêàÿ

ãðàíèöà ñîâïàäàþò.

�àññìîòðèì òåïåðü îáëàñòè ñ ãðàíèöåé, ñîñòîÿùåé èç äîñòèæèìûõ òî-

÷åê. �îâîðÿò, ÷òî x ∈ ∂D � äîñòèæèìàÿ òî÷êà, åñëè ñóùåñòâóåò íåïðå-

ðûâíàÿ êðèâàÿ γ : [0, 1] → clD òàêàÿ, ÷òî γ([0, 1)) ⊂ D è γ(1) = x.

Ïðåäëîæåíèå 3.14. Ïóñòü D � îãðàíè÷åííàÿ îáëàñòü è x ∈ ∂D � äî-

ñòèæèìàÿ òî÷êà. Òîãäà ñóùåñòâóåò ãðàíè÷íûé ýëåìåíò h ∈ Hρ,p(D) òàêîé,
÷òî x ∈ S(h).

Äîêàçàòåëüñòâî. Ïóñòü γ � êðèâàÿ òàêàÿ, ÷òî γ(1) = x è γ([0, 1)) ⊂ D.
Âûáåðåì ïîñëåäîâàòåëüíîñòü òî÷åê (xk)k∈N íà γ òàê, ÷òîáû d(xk, x) → 0
ïðè k → ∞.
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Ïîêàæåì, ÷òî ïîñëåäîâàòåëüíîñòü òî÷åê (xk)k∈N �óíäàìåíòàëüíà â åì-
êîñòíîé ìåòðèêå. Äåéñòâèòåëüíî, ðàç òî÷êè xm = γ(tm), xl = γ(tl), tm >
tl, ïðèíàäëåæàò êðèâîé γ, òî, ïðèìåíÿÿ ìîíîòîííîñòü åìêîñòè, âûâîäèì

íåðàâåíñòâà

ρp(xm, xl) ≤ cap((γ|[tl,tm], F );D1,p(D))
1

p

≤ cap((B(x, r), F );D1,p(D))
1

p ≤ cap((B(x, r), F );D1,p(X))
1

p ,

ãäå r > 0 � òàêîé ðàäèóñ, ÷òî γ|[tl,tm] ⊂ B(x, r). Ñëåäîâàòåëüíî, âûïîëíÿ-

åòñÿ ðàâåíñòâî lim
m,l→∞

ρp(xm, xl) = 0.

Àíàëîãè÷íî äîêàçûâàåòñÿ, ÷òî ëþáûå ïîñëåäîâàòåëüíîñòè (xn)n∈N ⊂ γ
è (x′

n)n∈N ⊂ γ, ñõîäÿùèåñÿ ê òî÷êå x, ýêâèâàëåíòíû â åìêîñòíîé ìåòðèêå.

Çíà÷èò, ñóùåñòâóåò ãðàíè÷íûé ýëåìåíò h ∈ Hρ,p(D), h = [(xk)k∈N]. Ïî
ïîñòðîåíèþ âûïîëíÿåòñÿ âêëþ÷åíèå x ∈ S(h).

Çàìå÷àíèå 3.15. Â ñëó÷àå, êîãäà îáëàñòü D íå îãðàíè÷åíà, íóæíî ó÷è-

òûâàòü åìêîñòü ïðèñîåäèíåííîé òî÷êè∞. Åìêîñòü êîíäåíñàòîðà ({∞}, F )
â ïðîñòðàíñòâå D1,p(D) îïðåäåëÿåòñÿ �îðìóëîé

cap(({∞}, F );D1,p(D)) =

∫

D

|∇pu|
p dµ,

ãäå èí�èìóì áåðåòñÿ ïî âñåì �óíêöèÿì u òàêèì, ÷òî u|U∩D ≥ 1 è u|F ≤ 0,
ãäå U � ïðîèçâîëüíàÿ îêðåñòíîñòü òî÷êè {∞}.

Òîãäà ïðåäëîæåíèå 3.14 â ñëó÷àå x = {∞} �îðìóëèðóåòñÿ òàê: åñ-

ëè D � íåîãðàíè÷åííàÿ îáëàñòü è {∞} � äîñòèæèìàÿ òî÷êà, ïðè÷åì

cap(({∞}, F );D1,p(D)) = 0, òî òî÷êà {∞} ïðèíàäëåæèò íîñèòåëþ íåêî-

òîðîãî åìêîñòíîãî ãðàíè÷íîãî ýëåìåíòà h ∈ Hρ,p(D).

Îïðåäåëèì ïîíÿòèå µ-ñâÿçíîñòè â ãðàíè÷íûõ òî÷êàõ (ñì., íàïðèìåð,

[14, 16℄).

Îïðåäåëåíèå 3.16. (a) Îáëàñòü D íàçûâàåòñÿ ëîêàëüíî ñâÿçíîé â

òî÷êå x ∈ ∂D ∪ {∞}, åñëè ëþáàÿ îêðåñòíîñòü U òî÷êè x ñîäåðæèò ïîä-

îêðåñòíîñòü V ⊂ U òàêóþ, ÷òî ìíîæåñòâî V ∩D ñâÿçíî.

(b) Îáëàñòü D íàçûâàåòñÿ ëîêàëüíî µ-ñâÿçíîé â òî÷êå x ∈ ∂D ∪ {∞},
åñëè ëþáàÿ îêðåñòíîñòü U òî÷êè x ñîäåðæèò ïîäîêðåñòíîñòü V ⊂ U , ñîñòî-
ÿùóþ èç µ ñâÿçíûõ êîìïîíåíò V1, V2, . . . , Vµ òàêèõ, ÷òî êàæäàÿ êîìïîíåíòà

Vi ëîêàëüíî ñâÿçíà â òî÷êå x äëÿ âñåõ i = 1, 2, . . . , µ.
Â ÷àñòíîñòè, îáëàñòü D ëîêàëüíî ñâÿçíà â òî÷êå x ∈ ∂D, åñëè D ëî-

êàëüíî 1-ñâÿçíà â ýòîé òî÷êå.

(c) Îáëàñòü D êîíå÷íî ñâÿçíà â òî÷êå x ∈ ∂D ∪ {∞}, åñëè îáëàñòü

µ-ñâÿçíà äëÿ íåêîòîðîãî µ ∈ N â ýòîé òî÷êå.
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Ïîíÿòíî, ÷òî ãðàíè÷íûå òî÷êè îáëàñòåé ñ êîíå÷íî ñâÿçíîé ãðàíèöåé

äîñòèæèìû. Èç ïðåäëîæåíèÿ 3.14 ñëåäóåò, ÷òî ëþáàÿ ãðàíè÷íàÿ òî÷êà ñ

êîíå÷íî ñâÿçíîé ãðàíèöåé ñîäåðæèòñÿ â íîñèòåëå íåêîòîðîãî åìêîñòíîãî

ãðàíè÷íîãî ýëåìåíòà. Ñëåäóþùàÿ ëåììà óòî÷íÿåò ýòî óòâåðæäåíèå.

Ëåììà 3.17. Âûïîëíÿþòñÿ ñëåäóþùèå óòâåðæäåíèÿ:
(a) åñëè îáëàñòü D ëîêàëüíî ñâÿçíà â òî÷êå x ∈ ∂D, òî ëþáûå äâà

ãðàíè÷íûõ ýëåìåíòà h1, h2 ∈ Hρ,p(D), íîñèòåëè êîòîðûõ ïåðåñåêàþòñÿ â

òî÷êå x, ñîâïàäàþò;
(b) åñëè îáëàñòü D ëîêàëüíî µ-ñâÿçíà â òî÷êå x ∈ ∂D, òî ãðàíè÷íûå

ýëåìåíòû h1, h2, . . . , hµ, hµ+1 ∈ Hρ,p(D), íîñèòåëè êîòîðûõ ïåðåñåêàþòñÿ â
òî÷êå x, íå ìîãóò áûòü ðàçëè÷íû: êàê ìèíèìóì, äâà èç íèõ ñîâïàäàþò.

Äîêàçàòåëüñòâî. Ñ î÷åâèäíûìè ìîäè�èêàöèÿìè, ýòà ëåììà äîêàçû-

âàåòñÿ àíàëîãè÷íî åâêëèäîâó ñëó÷àþ [25, Ñëåäñòâèå 2.34℄.

�åçóëüòàòû [47, � 4℄ î ñðàâíåíèè åñòåñòâåííûõ ãðàíèö (ãðàíèöû ïðî-

ñòûõ êîíöîâ, ãðàíèöû Ìàçóðêåâè÷à è ò. ä.) è åìêîñòíîé ãðàíèöû â îáëàñòè

ñ ëîêàëüíî êîíå÷íî ñâÿçíîé ãðàíèöåé, î÷åâèäíî, âûïîëíÿþòñÿ è â ñëó÷àå

ìåòðè÷åñêèõ ïðîñòðàíñòâ ñ ìåðîé.

�àññìîòðèì ðàçëè÷íûå ïðèìåðû ïðîñòðàíñòâ, â êîòîðûõ ïðèìåíèìû

ïîëó÷åííûå ðåçóëüòàòû.

Ïðèìåð 3.18. Åâêëèäîâî ïðîñòðàíñòâî Rn
� n-ðåãóëÿðíîå ïî Àëü�îð-

ñó ïðîñòðàíñòâî, îáëàäàþùåå ñâîéñòâîì �åéíå � Áîðåëÿ, ïðè÷åì â Rn

âûïîëíÿåòñÿ 1-íåðàâåíñòâî Ïóàíêàðå.
Îïèñàíèå åìêîñòíûõ ãðàíè÷íûõ ýëåìåíòîâ â ðàçëè÷íûõ îáëàñòÿõ ìîæ-

íî íàéòè â ðàáîòàõ [23, 25, 47℄.

Ïðèìåð 3.19. �ðóïïà Êàðíî G (ìîäåëüíûé ïðèìåð ñóáðèìàíîâîé ãåî-

ìåòðèè) � ïðèìåð ðåãóëÿðíîãî ïî Àëü�îðñó ïðîñòðàíñòâà, îáëàäàþùåå

ñâîéñòâîì �åéíå � Áîðåëÿ, â ãðóïïå Êàðíî âûïîëíÿåòñÿ 1-íåðàâåíñòâî
Ïóàíêàðå, ñì. [48℄.

Òàêèì îáðàçîì, ðåçóëüòàòû íàñòîÿùåé ðàáîòû (�� 3�4) ïðèìåíèìû â

îáëàñòÿõ ãðóïïû Êàðíî. Ïîäðîáíåå î ãðóïïàõ Êàðíî, ñì., íàïðèìåð, [49,

50℄.

Ïðèìåð 3.20. Ïîíÿòíî, ÷òî êîìïàêòíûå ðèìàíîâû ìíîãîîáðàçèÿ îáëà-

äàþò òåìè æå ñâîéñòâàìè, ÷òî è åâêëèäîâî ïðîñòðàíñòâî Rn
.

Â ñëó÷àå íåêîìïàêòíûõ ïðîñòðàíñòâ íóæíî ó÷èòûâàòü ý��åêòû, âîç-

íèêàþùèå ¾íà áîëüøèõ ìàñøòàáàõ¿. Íàïðèìåð, ïîëíîå íåêîìïàêòíîå ðè-

ìàíîâî ìíîãîîáðàçèå M ñ îãðàíè÷åííîé ñíèçó êðèâèçíîé �è÷÷è RicM ≥
−Kg, K ≥ 0, � ìåòðè÷åñêîå ïðîñòðàíñòâî ñ ìåðîé, ïðè÷åì ìåðà îáëàäàåò

ëîêàëüíûì ñâîéñòâîì óäâîåíèÿ â ñèëó òåîðåìû Áèøîïà � �ðîìîâà (ñì.,
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íàïðèìåð, [51℄); òàêæå âM âûïîëíÿåòñÿ 2-íåðàâåíñòâî Ïóàíêàðå (ñì. [52℄).
Ïîäðîáíåå ñì., íàïðèìåð, [53, � 10.1℄ è [35, �ë. 14, � 2℄ è áèáëèîãðà�èþ òàì

æå.

Â ðàáîòå [47℄ äîêàçàí áîëåå ñëàáûé âàðèàíò ëåììû 3.1. Îñíîâíîå îò-

ëè÷èå â äîêàçàòåëüñòâå � âîçìîæíîñòü ïåðåõîäà â ëîêàëüíûå êàðòû è

ïðèìåíåíèå èçâåñòíûõ ñâîéñòâ åìêîñòè â åâêëèäîâûõ ïðîñòðàíñòâàõ. Â

ìåòðè÷åñêèõ ïðîñòðàíñòâàõ ñ ìåðîé, î÷åâèäíî, ýòî íåäîñòóïíî.

Ïðèìåð 3.21. �àññìîòðèì ïðèìåð, îòëè÷íûé îò ðèìàíîâà ìíîãîîáðàçèÿ

è ãðóïïû Êàðíî. Ïóñòü i : R→ R4
� èçîìåòðè÷åñêîå âëîæåíèå, íàïðèìåð,

x 7→ i(x) = (x, 0, 0, 0); j : R → H1
� èçîìåòðè÷åñêîå âëîæåíèå R â ãðóï-

ïó �åéçåíáåðãà ñ ýêñïîíåíöèàëüíûìè êîîðäèíàòàìè (êîîðäèíàòû 1 ðîäà),
íàïðèìåð, x 7→ j(x) = (x, 0, 0, 0). Äàëåå áóäåì îòîæäåñòâëÿòü R ñ i(R) è
j(R).

Òîãäà ïðîñòðàíñòâî X = R4
⊔
RH

1
� äèçúþíêòíîå îáúåäèíåíèå R4⊔H1

,

ãäå îòîæäåñòâëÿþòñÿ òî÷êè x ∈ R: i(x) = j(x). Ìåòðèêà â ïðîñòðàíñòâå X
çàäàåòñÿ �îðìóëîé

d(x, y) = inf{de(x, a) + dc(a, y) | a ∈ R},

ãäå x ∈ R4
, y ∈ H1

, de � ìåòðèêà â R4
, dc � ìåòðèêà Êàðíî � Êàðàòåîäîðè

â H1
. Äëÿ îñòàëüíûõ ïàð òî÷åê ìåòðèêà d ñîâïàäàåò ñ ìåòðèêîé â Rn

èëè

â H1
.

Ìåðà µ çàäàåòñÿ êàê ñóììà ìåð Ëåáåãà ïåðåñå÷åíèé ñ ñîîòâåòñòâóþ-

ùèìè ïðîñòðàíñòâàìè. Òàê êàê ïðîñòðàíñòâà R4
è H1

� 4-ðåãóëÿðíûå
ïðîñòðàíñòâà ïî Àëü�îðñó, ïðîñòðàíñòâî (X, d, µ) òîæå 4-ðåãóëÿðíî ïî

Àëü�îðñó. Áëàãîäàðÿ [54, Òåîðåìà 6.15℄ â ïðîñòðàíñòâå X âûïîëíÿåòñÿ

p-íåðàâåíñòâî Ïóàíêàðå ïðè p > 3.

� 4. �ðàíè÷íîå ïîâåäåíèå îòîáðàæåíèé

Íàïîìíèì ïðåäïîëîæåíèÿ î ïðîñòðàíñòâå: (X, d, µ)� ëîêàëüíî ñâÿçíîå

ïðîñòðàíñòâî ñî ñâîéñòâîì �åéíå � Áîðåëÿ, X � Q-ðåãóëÿðíî ïî Àëü�îð-
ñó, Q ≥ 2, â X âûïîëíÿåòñÿ p0-íåðàâåíñòâî Ïóàíêàðå äëÿ Q− 1 < p0 ≤ Q.
Ñèìâîëîì (Y, δ) îáîçíà÷àåì ñåïàðàáåëüíîå ìåòðè÷åñêîå ïðîñòðàíñòâî.

Â ðàáîòàõ [30, 31, 32℄ ïîëó÷åí ñëåäóþùèé êðèòåðèé äëÿ ãîìåîìîð�èç-

ìîâ, èíäóöèðóþùèõ îãðàíè÷åííûå îïåðàòîðû êîìïîçèöèè ïðîñòðàíñòâ

Ñîáîëåâà.

Íàïîìíèì íåîáõîäèìûå ïîíÿòèÿ. Ïóñòü ϕ : X → Y � ãîìåîìîð�èçì

êëàññà �åøåòíÿêà D1,p
loc(X ; Y ), 1 ≤ p < ∞. �îâîðÿò, ÷òî ϕ � îòîáðàæåíèå

ñ êîíå÷íûì èñêàæåíèåì, åñëè

|Dpϕ|(x) = 0 äëÿ µ-ï. â. x ∈ Zϕ = {x′ ∈ X | Jϕ(x′) = 0}.
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Ïóñòü ϕ : X → Y � ãîìåîìîð�èçì êëàññà D1,p
loc(X ; Y ), 1 ≤ p < ∞, ñ êîíå÷-

íûì èñêàæåíèåì. Îïåðàòîðíàÿ �óíêöèÿ èñêàæåíèÿ Kq,p(·, ϕ) îïðåäåëÿ-
åòñÿ �îðìóëîé

Kq,p(x, ϕ) =





|Dqϕ|(x)

(Jϕ(x))
1
p
, åñëè Jϕ(x) 6= 0,

0, èíà÷å.

Îòìåòèì, ÷òî â ñèëó êîíå÷íîñòè èñêàæåíèÿ ϕ �óíêöèÿ Kq,p(·, ϕ) êîððåêò-
íî îïðåäåëåíà.

Ìåðà µ íàçûâàåòñÿ ìåðîé �àäîíà, åñëè ëþáîå êîìïàêòíîå ïîäìíîæå-

ñòâî K ⊂ X èìååò êîíå÷íóþ ìåðó: µ(K) < ∞, è äëÿ ëþáîãî µ-èçìåðèìîãî
ìíîæåñòâà A èìååò ìåñòî ñëåäóþùåå ðàâåíñòâî (ñð. ñ ëåììîé 2.1):

µ(A) = sup{µ(K) | A ⊃ K � êîìïàêòíîå ïîäìíîæåñòâî}.

Â ñëó÷àå, êîãäà (X, d), íàïðèìåð, ëîêàëüíî êîìïàêòíî, òî ìåðà µ � ìåðà

�àäîíà. Â [35, Ïðåäëîæåíèå 3.3.46℄ ïðèâåäåí êðèòåðèé, êîãäà µ � ìåðà

�àäîíà â ìåòðè÷åñêîì ïðîñòðàíñòâå ñ ìåðîé. Â [34, ãë. 2℄ èçëîæåíû îñ-

íîâíûå ñâîéñòâà ìåð �àäîíà â õàóñäîð�îâûõ ëîêàëüíî êîìïàêòíûõ ïðî-

ñòðàíñòâàõ.

Òåîðåìà 4.1. Ïóñòü (X, d, µ), (Y, δ, ν) � ìåòðè÷åñêèå ïðîñòðàíñòâà ñ

ìåðîé, ïðè÷åì µ � ìåðà �àäîíà. Ïóñòü òàêæå ϕ : X → Y � ãîìåîìîð�èçì,

1 ≤ q ≤ p < ∞ è

1
σ
= 1

q
− 1

p
, åñëè q < p, è σ = ∞, åñëè q = p.

Îòîáðàæåíèå ϕ èíäóöèðóåò îãðàíè÷åííûé îïåðàòîð êîìïîçèöèè

ϕ∗ : D1,p(Y ) ∩ Lip(Y ) → D1,q(X)

òîãäà è òîëüêî òîãäà, êîãäà

(a) ϕ ∈ D1,q
loc(X ; Y ),

(b) ϕ èìååò êîíå÷íîå èñêàæåíèå,

(c) îïåðàòîðíàÿ �óíêöèÿ èñêàæåíèÿ Kq,p(x, ϕ) ∈ Lσ(X).

Ïðè ýòîì, èìååò ìåñòî ðàâåíñòâî ‖Kq,p(·, ϕ) | Lσ(X)‖ = ‖ϕ∗‖. Áîëåå
òîãî, ïðè q < p ñëåäóþùèå �óíêöèè ìíîæåñòâ ñîâïàäàþò:

Ψ(U) =

∫

ϕ−1(U)

Kq,p(x, ϕ)
σ dµ,

äëÿ ëþáîãî îòêðûòîãî U ⊂ Y , ãäå Ψ� ìåðà àññîöèèðîâàííàÿ ñ îïåðàòîðîì

ϕ∗
.
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�îìåîìîð�èçìû ϕ îáëàñòåé ìåòðè÷åñêèõ ïðîñòðàíñòâ ñ ìåðîé, óäî-

âëåòâîðÿþùèõ óñëîâèÿì (a)�(c) òåîðåìû 4.1, áóäåì íàçûâàòü Qq,p-ãîìåî-

ìîð�èçìàìè.

Ïóñòü ϕ � Qq,p-ãîìåîìîð�èçì. Ïóñòü òàêæå E, F � êîíòèíóóìû â Y ,
ïîëîæèì E = (E, F ). Åñëè u � íåïðåðûâíàÿ äîïóñòèìàÿ �óíêöèÿ äëÿ

êîíäåíñàòîðà E , òî u◦ϕ � äîïóñòèìàÿ �óíêöèÿ äëÿ êîíäåíñàòîðà ϕ−1E =
(ϕ−1(E), ϕ−1(F )) è âûïîëíÿåòñÿ íåðàâåíñòâî

cap(ϕ−1E ;D1,q(X))
1

q ≤ ‖ϕ∗‖ cap(E ;D1,p(Y ))
1

p .

Òàêèì îáðàçîì, åñëè f � îáðàòíûé ãîìåîìîð�èçì ê ϕ ∈ Qq,p, òî äëÿ

ëþáîãî êîíäåíñàòîðà E â Y âûïîëíÿåòñÿ íåðàâåíñòâî

cap(fE ;D1,q(X))
1

q ≤ ‖ϕ∗‖ cap(E ;D1,p(Y ))
1

p . (4)

Êëàññ ãîìåîìîð�èçìîâ f = ϕ−1
, ãäå ϕ ∈ Qq,p, áóäåì îáîçíà÷àòü ñèìâîëîì

Q−1
q,p .

Äîêàæåì òåîðåìó î ãðàíè÷íîì ïîâåäåíèè äëÿ Q−1
q,p-ãîìåîìîð�èçìîâ,

ñì. ðàáîòû [22, 25℄, ãäå ýòà òåîðåìà óñòàíîâëåíà â ñëó÷àå åâêëèäîâûõ ïðî-

ñòðàíñòâ.

Òåîðåìà 4.2. Ïóñòü D, D′
� îáëàñòè â ìåòðè÷åñêèõ ïðîñòðàíñòâàõ ñ

ìåðîé (X, d, µ) è (Y, δ, ν), ïóñòü f : D → D′
� ãîìåîìîð�èçì êëàññà Q−1

q,p ,

p0 ≤ q ≤ p ≤ Q.
Òîãäà f : (D \ F, ρp,F ) → (D′ \ f(F ), ρq,f(F )) � ëèïøèöåâî îòîáðàæåíèå

â åìêîñòíûõ ìåòðèêàõ, ãäå F � òàêîé �èêñèðîâàííûé êîíòèíóóì, ÷òî

D \ F ñâÿçíî. Ñóùåñòâóåò åäèíñòâåííîå ïðîäîëæåíèå f íà ïîïîëíåíèÿ

ïðîñòðàíñòâ ïî åìêîñòíûì ìåòðèêàì, áîëåå òîãî, f ïåðåâîäèò åìêîñòíûå

ãðàíè÷íûå ýëåìåíòû Hρ,p(D) â åìêîñòíûå ãðàíè÷íûå ýëåìåíòû Hρ,q(D
′).

Äîêàçàòåëüñòâî. Áëàãîäàðÿ íåðàâåíñòâó (4) äëÿ ëþáûõ òî÷åê x, y ∈
D \ F è ëþáîé êðèâîé γ ⊂ D \ F ñ êîíöåâûìè òî÷êàìè x, y âûïîëíÿåòñÿ

ñîîòíîøåíèå

cap((f(γ), f(F ));D1,q(X))
1

q ≤ K cap((γ, F );D1,p(Y ))
1

p ,

ãäå K � íåêîòîðàÿ êîíñòàíòà. Îòñþäà âûâîäèì, ÷òî äëÿ ëþáûõ òî÷åê x,
y ∈ D \ F âûïîëíÿåòñÿ íåðàâåíñòâî

ρq,f(F )(f(x), f(y)) ≤ Kρp,F (x, y).

Òàêèì îáðàçîì, ïåðâàÿ ÷àñòü óòâåðæäåíèÿ äîêàçàíà.

Ñóùåñòâóåò åäèíñòâåííîå ïðîäîëæåíèå ëèïøèöåâîãî îòîáðàæåíèÿ íà

ïîïîëíåíèÿ ìåòðè÷åñêèõ ïðîñòðàíñòâ. Îáîçíà÷èì ýòî ïðîäîëæåíèå ñèìâî-

ëîì f . Ïîêàæåì, ÷òî îáðàç åìêîñòíîãî ãðàíè÷íîãî ýëåìåíòà h ∈ Hρ,p(D) �
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åìêîñòíîé ãðàíè÷íûé ýëåìåíò f(h) ∈ Hρ,q(D
′). Ïóñòü (xn)n∈N � ïðåäñòàâè-

òåëü h; òîãäà ïîñëåäîâàòåëüíîñòü (f(xn))n∈N íå èìååò ïîäïîñëåäîâàòåëü-

íîñòåé, ñõîäÿùèõñÿ ê âíóòðåííèì òî÷êàì D′
, ïîýòîìó [(f(xn))n∈N] � åì-

êîñòíîé ãðàíè÷íûé ýëåìåíò.

�àññìîòðèì îäíî èç ïðèëîæåíèé òåîðåìû 4.2: òåîðåìà Ê¼áå äëÿ Q−1
q,p-

ãîìåîìîð�èçìîâ. Â 1915 ã. Ê¼áå [55℄ äîêàçàë, ÷òî äëÿ êîí�îðìíîãî îòîá-

ðàæåíèÿ f : Ω → D îäíîñâÿçíîé îáëàñòè Ω â åäèíè÷íûé êðóã D ñóùåñòâóåò

ïðåäåë ïî ëþáîìó ðàçðåçó äóãîé (ar
wise limit along end-
ut).

Ïóñòü f : D → D′
� íåêîòîðîå îòîáðàæåíèå è x ∈ ∂D. Íàïîìíèì, ÷òî

x íàçûâàåòñÿ äîñòèæèìîé òî÷êîé, åñëè ñóùåñòâóåò íåïðåðûâíàÿ êðèâàÿ

γ : [0, 1] → clD òàêàÿ, ÷òî γ([0, 1)) ⊂ D è γ(1) = x; òàêèå êðèâûå áóäåì
íàçûâàòü ðàçðåçîì. ßñíî, ÷òî åñëè x � äîñòèæèìàÿ òî÷êà ïî ðàçðåçó γ,
òî ñóùåñòâóåò åìêîñòíîé ãðàíè÷íûé ýëåìåíò hx òàêîé, ÷òî x ∈ S(hx) (ïî-
äðîáíåå, ñì. ïðåäëîæåíèå 3.14); áóäåì ãîâîðèòü, ÷òî hx àññîöèèðîâàí ñ

òî÷êîé x ïî ðàçðåçó γ.
�îâîðÿò, ÷òî ïîñëåäîâàòåëüíîñòü (xn)n∈N ñõîäèòñÿ âäîëü ðàçðåçà γ ê

òî÷êå x, åñëè ñóùåñòâóþò òàêàÿ ïîñëåäîâàòåëüíîñòü (tn)n∈N ⊂ [0, 1), ÷òî
xn = γ(tn), tn → 1 ïðè n → ∞. Òî÷êà y ∈ D′

íàçûâàåòñÿ òî÷êîé ìíî-

æåñòâà íàêîïëåíèÿ Cγ(f, x) âäîëü ðàçðåçà γ (
luster set along end-
ut),

åñëè ñóùåñòâóåò ïîñëåäîâàòåëüíîñòü (xn)n∈N, ñõîäÿùàÿñÿ ê x âäîëü γ, òà-
êàÿ, ÷òî f(xn) → y ïðè n → ∞. Åñëè Cγ(x, f) ñîñòîèò èç îäíîé òî÷êè, òî

ãîâîðÿò, ÷òî ñóùåñòâóåò ïðåäåë f ïî ðàçðåçó γ.

Ïðåäëîæåíèå 4.3. Ïóñòü f : D → D′
� Q−1

q,p-ãîìåîìîð�èçì, p0 ≤
q ≤ p ≤ Q. Åñëè íîñèòåëè ãðàíè÷íûõ ýëåìåíòîâ Hρ,q(D

′) îäíîòî÷å÷íûå,
òî ñóùåñòâóåò ïðåäåë îòîáðàæåíèÿ f ïî ëþáîìó ðàçðåçó, ò. å. äëÿ ëþáîãî

ðàçðåçà γ ñ êîíöîì â òî÷êå x ∈ ∂D ñóùåñòâóåò ïðåäåë

lim
z→x
z∈γ

f(z) = S(f(hx)),

ãäå hx � åìêîñòíîé ãðàíè÷íûé ýëåìåíò, àññîöèèðîâàííûé ñ òî÷êîé x ïî

ðàçðåçó γ.

Äîêàçàòåëüñòâî. Ïóñòü γ � ðàçðåç ñ êîíöåâîé òî÷êîé x ∈ ∂D. Â ñèëó

ïðåäëîæåíèÿ 3.14 òî÷êà x ïðèíàäëåæèò íîñèòåëþ íåêîòîðîãî åìêîñòíîãî

ýëåìåíòà, îáîçíà÷èì ýòîò ýëåìåíò ñèìâîëîì hx.

Òîãäà ëþáàÿ ïîñëåäîâàòåëüíîñòü (xn)n∈N òî÷åê âäîëü γ �óíäàìåíòàëü-
íà â åìêîñòíîé ìåòðèêå (ñì. ïðåäëîæåíèå 3.14), è åå îáðàç (f(xn))n∈N �

ïðåäñòàâèòåëü ýëåìåíòà f(hx) (ñì. òåîðåìó 4.2). Òàê êàê íîñèòåëü S(f(hx))
ñîñòîèò èç îäíîé òî÷êè, ââèäó ïðåäëîæåíèÿ 3.11, âûïîëíÿåòñÿ ðàâåíñòâî

lim
z→x
z∈γ

f(z) = S(f(hx)).
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Òàêèì îáðàçîì, Cγ(x, f) = {S(f (hx))}.

Ïðèìåð 4.4. �àññìîòðèì ïðèìåð îáëàñòè, â êîòîðîé íîñèòåëè ýëåìåíòîâ

íåîäíîòî÷å÷íûå. Ïîëîæèì Rα = {(x, y, z) ∈ R3 | |y| < xα, x ∈ (0, 1), z ∈
(−1, 1)}� îáëàñòü ñ ãðåáíåì (ridge domain) ñòåïåíè α; îáîçíà÷èì ñèìâîëîì

R ãðåáåíü {(0, 0, t) | |t| ≤ 1}. Ïóñòü 2 < p ≤ 3 è α > p− 1.
Òîãäà ãðåáåíü R � íîñèòåëü îäíîãî ãðàíè÷íîãî ýëåìåíòà h (ïîäðîá-

íåå ñì., íàïðèìåð, [23, 25, 47℄). Ñ äðóãîé ñòîðîíû, äëÿ òîæäåñòâåííîãî

îòîáðàæåíèÿ f = id è äëÿ ëþáîé òî÷êè x ∈ R âûïîëíÿþòñÿ ñîîòíîøåíèÿ:

Cγ(x, f) = {x}  S(f (h)) = R,

ãäå γ � ïðîèçâîëüíûé ðàçðåç ñ êîíöåâîé òî÷êîé x.

Îòìåòèì, ÷òî àíàëîãè òåîðåìû Ê¼áå ðàññìàòðèâàëèñü äëÿ êâàçèêîí-

�îðìíûõ îòîáðàæåíèé â åâêëèäîâîì ïðîñòðàíñòâå â ðàáîòå [15℄, â ðàáîòå

[11℄ äîêàçàí ìåòðè÷åñêèé àíàëîã òåîðåìû Ê¼áå äëÿ ãîìåîìîð�èçìîâ êëàñ-

ñà F (íàïðèìåð, â ýòîì êëàññå ñîäåðæàòñÿ êâàçèêîí�îðìíûå îòîáðàæå-

íèÿ, îïðåäåëåííûå â ðàâíîìåðíûõ îáëàñòÿõ) ñ ïîìîùüþ ïðîñòûõ êîíöîâ

[10℄.

Çàìå÷àíèå 4.5. Àíàëîãè÷íî ñêàçàííîìó ìîæíî óñòàíîâèòü òåîðåìû î

ãðàíè÷íîì ïîâåäåíèè Q
−1
q,p-ãîìåîìîð�èçìîâ â îáëàñòÿõ ñ êîíå÷íî ñâÿçíîé

ãðàíèöåé. Íàïðèìåð, èìååò ìåñòî ñëåäóþùåå óòâåðæäåíèå: ïóñòü f : D →
D′

� ãîìåîìîð�èçì êëàññà Q−1
q,p , ãðàíèöà ∂D ëîêàëüíî ñâÿçíà â òî÷êå

x ∈ ∂D è h � òàêîé åìêîñòíîé ãðàíè÷íûé ýëåìåíò, ÷òî x ∈ S(h) (òàêîé
ýëåìåíò âñåãäà ñóùåñòâóåò), äîïóñòèì òàêæå, ÷òî S(f(h)) = {y}; òîãäà ãî-
ìåîìîð�èçì f ïðîäîëæàåòñÿ ïî íåïðåðûâíîñòè â òî÷êè x′ ∈ S(h), ïðè÷åì
âûïîëíåíî ðàâåíñòâî

lim
z→x′

z∈D

f(z) = y äëÿ ëþáîé òî÷êè x′ ∈ S(h).

Äîêàçàòåëüñòâî ýòèõ ðåçóëüòàòîâ ñëåäóåò àðãóìåíòàì ðàáîòû [25℄ è ìîæåò

áûòü ìîäè�èöèðîâàíî î÷åâèäíûì ñïîñîáîì â ñëó÷àå ìåòðè÷åñêèõ ïðî-

ñòðàíñòâ ñ ìåðîé.
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